
Incentive Mechanism for Peer-to-Peer Media
Streaming

Ahsan Habib and John Chuang
School of Information Management and Systems

University of California, Berkeley.
{habib,chuang}@sims.berkeley.edu

Abstract— We propose a rank-based peer-selection mechanism
for peer-to-peer media streaming systems. The mechanism pro-
vides incentives for cooperation through service differentiation.
Contributors to the system are rewarded with flexibility and
choice in peer selection, resulting in high quality streaming
sessions. Free-riders are given limited options in peer selection,
if any, and hence receive low quality streaming. Through sim-
ulation and wide-area measurement studies, we verify that the
mechanism can provide near optimal streaming quality to the
cooperative users until the bottleneck shifts from the sources to
the network.

I. INTRODUCTION

Peer-to-peer (P2P) systems rely on voluntary resource con-
tributions by individual peers. However, the inherent tension
between individual rationality and collective welfare produces
a misalignment of incentives in the grassroots provisioning
of P2P services. Empirical studies have shown free-riding
(consuming resources without contributing) to be prevalent in
P2P file-sharing networks [1], [2], legal threats from copyright
owners notwithstanding. Researchers have proposed various
incentive mechanisms, based on payment, punishment, or ser-
vice differentiation, to encourage cooperative behavior among
peers [3], [4], [5], [6], [7].

Peer-to-peer media streaming systems present additional
challenges, and opportunities, that are different from those of
traditional P2P file-sharing systems. Users derive utility from
P2P streaming systems not only from the availability of files
per se, but from the ability to obtain high quality streams of
these files. Since the quality of a streaming session depends on
a combination of factors, ranging from the characteristics of
the streaming sources (e.g., link capacity, availability, offered
rate) to the characteristics of the network paths (e.g., available
bandwidth, packet loss rate, overlap of paths from multiple
sources to receiver), the challenge is to design good peer
selection strategies to realize high quality streaming sessions.

We believe that peer selection for P2P streaming offers
a unique opportunity to tackle both the free-riding and the
streaming quality of service (QoS) challenges in a synergistic
manner. We propose an incentive mechanism that provides
service differentiation in peer selection for P2P streaming.
Contributors to the system are rewarded with flexibility and
choice in peer selection, resulting in high quality streaming
sessions. Free-riders are given limited options in peer selec-
tion, if any, and hence receive low quality streaming.

In Section II, we motivate our work with a case study of
the PROMISE P2P streaming system [8] in the presence of
free-riding behavior. We obtain several findings. First, at low
levels of cooperation, system performance is poor even when
the overall load is low. Second, when a peer contributes to
many streaming sessions, its streaming quality and that of its
remote receivers suffer degradation. Therefore, in contrast to
traditional P2P file-sharing systems, a P2P streaming system
cannot be sustained by a small fraction of altruistic users.
Furthermore, we confirm that streaming quality is strongly
dependent on the choice of suppliers (streaming sources).
A random peer selection scheme results in highly variable
streaming quality, whereas an informed peer selection scheme
produces high quality streaming with low variance.

In Section III, we propose an incentive mechanism where
a peer’s contribution level determines its score and its relative
ranking in the system, which in turn determines its ability
to select good peers, and ultimately its streaming quality.
We evaluate the mechanism in Section IV and find that it
provides near optimal quality to the cooperative users until
the bottleneck shifts from the suppliers to the network. We
discuss related work in Section V, before concluding the paper
in Section VI.

II. MOTIVATION

We study a P2P streaming system to understand the require-
ments to provide high quality streaming. Then, we evaluate
the system under free riding to investigate the impact of non-
cooperation on the streaming quality.

A. P2P streaming system case study

A streaming system is required to encompass the key
functions of object lookup, peer-based aggregated streaming,
and dynamic adaptations to network and peer conditions. The
quality of a peer depends on its availability, offered rate, and
capacity of its outgoing link. To avoid paths sharing among
multiple suppliers, a streaming system should leverage the
underlying network topology and performance information for
the selection of suppliers. To cope with fluctuations in the
service received from the network, several techniques can be
used such as forward error correction (FEC) coding, multi-
description coding, and sending rates adjustment. The system
monitors the status of peers to react to peer/connection failure.

A dynamic switching mechanism is required to replace a failed
peer without disrupting a streaming session.

In this paper, we use PROMISE [8] as an example sys-
tem that satisfies the requirements of a streaming system.
PROMISE uses topology-aware peer selection to obtain the
best suppliers. The topology-aware technique infers the un-
derlying topology and its characteristics, and considers the
available capacity and packet loss ratio of each link of a
path. Consider the example shown in Figure 1. The figure
shows a network topology of a set of potential suppliers to
a receiver. The topology is annotated with available capacity
of each segment of a path, the offered rate of each peer,
and its availability. A random technique may choose peers
P1, P3, P4 as suppliers, even though some of these peers
have low availability (P1), and others share a congested path
(P3, P4). However, the topology-aware technique selects the
best set: P2, P3, P6 because they provide the best aggregate
rate considering their availability, offered rate, and the sender
to the receiver path dynamics [8]. Later, we show that a
certain level of cooperation is required to receive high quality
streaming even with the topology-aware supplier selection.

0.5

0.5

P2: 0.25, 0.7

Avail BW

Receiver

P3: 0.25, 0.8 P4: 0.5, 0.5 P6: 0.5, 0.9P5: 0.25, 0.8

Virtual router

0.25

1.0

P1: 0.25, 0.2

Offered rate

Availability

Fig. 1. Peer selection by PROMISE. P2, P3, and P6 are selected because
they provide the best aggregate rate considering their availability, offered rate,
and the network dynamics of the paths from the senders to the receiver.

A streaming session in PROMISE is established as follows:
A peer requesting a media file issues a lookup request to the
underlying P2P substrate, which will return a set of candidate
peers who have the content. Usually, a streaming session
requires more suppliers than a file downloading session, which
implies more cooperation among users is required in a stream-
ing environment. The candidate set of PROMISE typically
contains 10 to 20 peers. A topology is constructed and anno-
tated to connect the candidate peers with the receiver. Using
the annotated topology, the selection algorithm determines the
active sender set that is likely to yield the best quality for this
streaming session. The rest of the candidate peers are kept
in a standby sender set, from which replacement peers will
substitute failed or degraded peers from the active set. The
receiver assigns a sending rate to each of the active senders.

The streaming session continues as far as there is no need to
switch to a different active sending set. A switch is needed if
a peer fails or the network path becomes congested. At that
time, the topology is updated with new values.

B. Impact of non-cooperation

Using packet-level simulation and Internet experiments, we
study the impact of peer non-cooperation on the performance
of a P2P media streaming system (PROMISE). We analyze
this impact from three angles. First, how user cooperation
can enhance the average quality of streaming. Second, what
negative effects cooperation might bring to a peer that shares
resources. Third, what a peer would gain from sharing its
resources.

To quantify the performance of media streaming system, we
define quality of a streaming session as:

Q =
∑T

i=1 Zi

T
, (1)

where T is the number of packets in a streaming session and
Zi is a variable that takes value 1 if packet i arrives at the
receiver before its scheduled play-out time, and 0 otherwise.
The quality is different from throughput because it considers
the deadline of each packet. The parameter Q captures other
performance parameters such as packet delay, packet loss,
and jitter. A packet that misses its deadline is discarded and,
therefore, does not contribute to the quality of a streaming
session, similar to a lost packet. The system quality is defined
as the average quality of all receivers in the system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
ve

ra
ge

 q
ua

lit
y

of
 s

tr
ea

m
in

g,
 Q

Cooperation (%)

K=1
K=10
K=20
K=30

Fig. 2. Simulation data to show how the level of cooperation affects the
quality Q of the system. Higher cooperation provides better quality of service.
If the level of cooperation is low, the streaming quality is also low even when
the network is not heavily congested. When the system has limited capacity,
a large number of concurrent sessions degrade the quality of the system even
when the cooperation level is 100%.

Cooperation brings quality. We simulate a streaming
system with 1,200 peers who are connected by a Internet-like
topology generated using the Georgia Tech Internet Topology
Mapping tool. Figure 2 shows that the quality of streaming
sessions changes with level of cooperation among different

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ve

ra
ge

 Q
ua

lit
y

of
 S

tr
ea

m
in

g,
 Q

Uploading from Berkeley (Mbps)

(a) Quality of Berkeley node

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ve

ra
ge

 Q
ua

lit
y

of
 S

tr
ea

m
in

g,
 Q

Uploading from Berkeley (Mbps)

(b) Quality of all remote receivers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ve

ra
ge

 Q
ua

lit
y

of
 S

tr
ea

m
in

g,
 Q

Uploading from Berkeley (Mbps)

CMU
UCSD

Rice

(c) Quality of individual receiver

Fig. 3. Simultaneous uploading from a peer affects the quality of both local and remote peers in Planet-Lab setup. Downloading quality Q of the Berkeley
node is poor when it supplies at a rate ≥ 3 Mbps. Average Q of the remote peers as well as the quality experienced by individual peers is poor when Berkeley
supplies at a high rate. The figure shows average, minimum, and maximum values.

peers. The number of concurrent sessions (denoted by K) is
varied in this simulation.

When the system is almost idle (K = 1), the cooperation
level does not affect the streaming quality. The streaming
quality is the maximum at all cooperation levels because
there is no contention for resources. However, the lack of
cooperation negatively impacts the streaming quality even if
the network is not heavily loaded. For example, when the
system has 10 concurrent sessions (K = 10), the streaming
quality is excellent as long as the level of cooperation is
above 30%. The quality degrades sharply when the level of
cooperation drops below this level. The performance degrades
even more for larger K when the level of cooperation low.
Furthermore, when the system has limited capacity, a large
number of concurrent sessions degrade the quality of the
system even when the cooperation level is 100%. It is clear
from this experiment that cooperation is necessary to maintain
the system performance within an acceptable range, and the
cooperation might not be effective if the bottleneck is shifted
from the suppliers to the network.

Simultaneous uploading hurts quality. We study whether
there is a significant cost of sharing resources, especially the
bandwidth. The term bandwidth is used to indicate the capacity
of a link. We ask two questions: First, does simultaneous
uploading affect the downloading quality of the users? Second,
does the concurrent uploading reduce the downloading quality
of the remote peers? If answer of the first question is yes, a
user is even less motivated to share its bandwidth with others
without any incentive. If the answer of the second question is
yes, a peer should not supply to so many peers to maintain
the quality of the remote receivers.

We use PROMISE implementation as a streaming system in
the PlanetLab [9] test-bed to conduct experiments in the wide
area Internet. We use nodes at Berkeley, Caltech, UCSD, Rice,
Duke, MIT, BU, Purdue, CMU, UMass, UTexas, Arizona,
Stanford, Germany, UK, France, Italy, Sweden, and Taiwan in
our experiments. Figure 3 shows the quality Q of the Berkeley
node that downloads from several suppliers and uploads to
several remote receivers. The X-axis is the uploading rate

from Berkeley, which is varied from 0− 4 Mbps. Figure 3(a)
shows that the quality of the downloading session is good even
though the peer is supplying at a rate higher than 2 Mbps. The
quality goes down when the rate is 3 Mbps or higher. Thus,
there is a limitation about how much a peer should supply
without hurting its own quality.

We measure the quality obtained by remote users down-
loading from Berkeley. Figure 3(b) shows the average quality
and Figure 3(c) shows the individual quality of the remote
users. Most of the remote users experience poor quality when
Berkeley is supplying to many users. Thus, there is a cost
associated with uploading: too much uploading from a peer
hurts the performance of its own quality and the quality of
the remote receivers. Thus, while a traditional file sharing
system can be sustained with a low level of cooperation, a
P2P streaming system cannot provide high streaming quality
to its users if only a small fraction of users cooperate.

Random peer selection provides random quality. We
observe in our experiments that the proper selection of peers is
important for a P2P streaming session. Arbitrary peer selection
yields unpredictable quality, which might be acceptable in file
sharing, but not in a streaming session. On the other hand,
quality-aware peer selection can provide stable and predictable
quality which is a pre-condition for video applications. We
leverage this observation to design an incentive mechanism
by providing quality-aware peer selection to the cooperative
users and arbitrary peer selection to others.

We use the same setup in PlanetLab test bed as described
in the previous section. Figure 4 shows that arbitrary peer can
provide as high as Q = 1, however, the minimum value goes
to less than 0.2 for each experiment. We vary the number
of suppliers on the X-axis. We observe that higher number
of suppliers might provide even worse quality because the
receiver has to maintain more connections and some of the
suppliers might share congestion in their paths to the receiver.
Figure 4(b) shows that quality-aware peer selection really pays
off. Not only the quality is high, but also the quality is more
stable in this case. Thus, a motivation to the users for sharing
is that they will receive good and predictable quality of service

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

A
ve

ra
ge

 Q
ua

lit
y

of
 S

tr
ea

m
in

g,
 Q

Number of Suppliers

(a) Random suppliers

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6

A
ve

ra
ge

 Q
ua

lit
y

of
 S

tr
ea

m
in

g,
 Q

Number of Suppliers

(b) Good suppliers

Fig. 4. Quality experiencing by a receiver when suppliers are varied in Planet-Lab test-bed. (a) suppliers are chosen arbitrarily and the quality is highly
unpredictable. (b) known and good peers are chosen as suppliers to provide high quality and predictable service.

in return.

III. PROPOSED INCENTIVE MECHANISM

P2P systems in general are characterized by large popu-
lations and asymmetries of interest, resulting in few, if any,
repeat transactions between any given pair of nodes [5].
Therefore, we adopt a score-based incentive mechanism that
encourages cooperation through indirect reciprocity [10].

Contribution earns Score
maps to Percentile

Rank
Peer Selectionallows provides

QoS

Cost Utility

incurs

Fig. 5. Converting the contribution of a user into a score, which is mapped
into a percentile rank among all users. The rank is used to select suppliers
of a streaming session, which eventually determines the perceived streaming
quality of a user. The utility of a user depends on the quality of service it
receives and the cost of its contribution.

We consider a P2P media streaming system consisting of
rational users who choose their contribution level in order to
maximize their individual utility (Figure 5). The contribution
level xi of user i is converted into a score Si, which in turn is
mapped into a percentile rank Ri, determining the rank of the
user among all users in the system. Peer selection depends on
the rank ordering of the requestors and candidate suppliers.
For example, a peer selection scheme may allow a user to
select peers with equal or lower rank to serve as suppliers. The
outcome of the peer selection process is the realized quality
of the streaming session. User utility Ui is a function of the
streaming session quality Q and the contribution cost C:

Ui(xi) = aiQ(xi) − biC(xi), (2)

where ai and bi define the values of streaming quality and
contribution cost to user i.

Quality can be expressed as a function of contribution,
score, or rank. The quality function is system dependent, but
should exhibit the following properties: (i) it is monotonically
non-decreasing in user score, (ii) the quality asymptotically
reaches to the value QMAX , which represents the highest
possible quality provided by the system, (iii) the function has
a non-negative initial value, i.e., QBE = Q(Si=0) ≥ 0. We
will consider quality functions later in this section.

When a peer first joins the system, it begins with a score of
zero and receives best-effort service, i.e., QBE = Q(Si=0). The
quality of this service may vary from system to system, and
vary as a function of system load. For example, a supplier
node may choose to serve a node with a lower score only
when it is idle. Hence, best-effort service quality can be highly
unpredictable. If a user wishes to receive better-than-best-
effort streaming, it must earn a positive score by contributing
to the system. A rational user will determine its optimal
contribution level x∗

i (or equivalently, optimal score S∗
i or

optimal rank R∗
i) to maximize its utility:

max
xi≥0

Ui(xi) s.t. Ui ≥ 0. (3)

Note that newcomers and free-riders are treated identically.
This is to prevent whitewashing behavior [5], where free-riders
repeatedly masquerade as newcomers by obtaining new iden-
tities at low or no cost prior to each request. This punishment
imposed on the newcomers is exactly the social cost of cheap
pseudonyms as quantified in [11].

If the peer selection scheme allowing a user to select peers
with equal or lower rank is used, and a large number of users
join the system at the same time (with the same initial score of
zero), it may be possible for a free-rider to obtain high quality
service by selecting these fellow newcomers. However, this
exploitation can be bounded in duration, beyond which the
free-rider will have to contribute to continue receiving high
quality streams. This is because if a peer does not contribute
for a while, its score will fall behind others, and thus it will

not receive any quality service from others.
We next discuss the various component stages of the mech-

anism. These include score and cost functions, which map
contributions to scores and costs; percentile rank computation,
which maps scores to ranks; and quality functions, which map
rank to expected quality.

A. Scoring function and contribution cost

There is tremendous flexibility in the choice of a scoring
function. A scoring function could consider only the contribu-
tion by a user, or both the contribution and consumption by a
user. For example, if the amount of uploaded and downloaded
bytes are Bout and Bin respectively, possible scoring functions
might include: S = Bout, S = Bout - Bin, S = Bout

Bin
. KaZaA

uses the third function in scoring their users. The scores might
be subject to an ageing factor to encourage contributions on a
continual basis.

The scoring function could also take into account the
difference in demand for different resources in the network.
For example, if a user i supplies Li blocks of a file at a
data rate Ti for duration Di, the user may receive a score of
Lα

i T β
i Dγ

i , where α, β, and γ serve as market pricing signals
to reflect the demand of the system.

Where appropriate, the scoring function could additionally
take into account the amount of defection vis-a-vis the amount
of cooperation by a user. Specifically, in a Reward-Penalty
scheme, users are penalized for refusing to serve a request just
as they are rewarded for serving one. This is in contrast to the
baseline Reward scheme, where defections are not penalized.
In general, defections are usually difficult or impossible to
detect in P2P systems [5], so that the effectiveness of this
type of scoring function may be limited.

Contribution cost incurred by node i for serving a streaming
session can be expressed as a function of bandwidth and
storage usage: Ci = cLLiM + cT TiDi where cL is the unit
storage cost, Li is the number of blocks served by node i, M is
the average block size in bytes, cT is the unit transmission cost,
Ti is the transmission rate of node i, and Di is the transmission
duration of node i. Hence, the total number of bytes uploaded
is Bout,i = LiM = TiDi.

For the evaluation section, we consider x = Bout, S = x =
Bout, and C = cT x = cT Bout.

A common problem with any score, payment or reputation
based scheme is that a malicious user can tamper the software
and increase its own score. A user can collude with others to
increase their scores without sharing anything. One solution
of the collusion problem is to compute the score subjectively,
where one user weighs the opinion of another user based on
how much they trust each other [5]. Another solution is to use
a security infrastructure such as EigenTrust [12], where the
global reputation of each peer i is given by the local trust
values assigned to peer i by other peers, weighted by the
global reputations of the assigning peers. This framework can
be integrated to compute and maintain scores in our streaming
system.

B. Percentile rank computation

A user’s ability to select peers as its suppliers is determined
by its score. For example, when a user with score Si issues a
request for a particular file, only nodes with scores less than
or equal to Si will respond to the request. We note that a
peer with a score higher than Si can still respond and be a
supplier if it is selected, however, they are not bound to do it.
Knowledge of one’s score alone is not sufficient for predicting
the expected quality to be received by the user. The score
must be mapped into a percentile rank, based on the global
distribution of scores, so that a user can determine whether
the current score is sufficient for the user to obtain streaming
service of an acceptance quality level.

To compute the percentile rank, we calculate the cumulative
distribution function (cdf) of the scores. The score is a discrete
variable and thus the probability density function (pdf) is
defined only at the values where the score has a meaningful
value. The cdf is defined as:

F (S) =
Shigh∑

i=Slow

f(i), (4)

where f is the pdf of the scores. The cdf provides a relation-
ship between the percentile rank and the score. The percentile
is obtained by dividing the cdf with the total number of peers.

In the absence of a centralized entity that maintains global
state (i.e., updated scores of all users), individual nodes can
locally estimate their rank based on a sample of user scores,
possibly via the passive monitoring of query and/or response
messages containing score information exchanged over the
network. This is an acceptable solution since percentile ranks
are only used for prediction purposes, not for actual peer
selection. Proposition 1 shows that the required sample size
does not depend on the size of the network, but only on the
variance of the population. For example, Figure 6 shows that a
sample size of 50 or 100 produces a reasonable approximation
of percentile rank in a network with population of 1200 users.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

Pe
rc

en
til

e
R

an
k

Score

sample 100
sample 50
sample 20

whole population

Fig. 6. Using random sampled data to estimate the percentile rank from
a population of 1200 users. A sample size of 50 or 100 provides good
approximation of the percentile rank, but not a sample size of 20.

NS

G i

BEQ

R

MAXQ

Q

(a) Stylized model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 q
ua

lit
y

of
 s

tr
ea

m
in

g,
 Q

Score

(b) Empirical data from Planet-Lab

Fig. 7. Quality curves from the stylized system and the incentivized PROMISE implementation deployed on Planet-Lab. The wide-area measurements provide
a good fit with (5) when QBE = 0.3, QMAX = 1, and NS = Gi.

Proposition 1: Each peer requires O(σ2) samples to ap-
proximate its percentile rank, where σ is the standard deviation
of the original population of scores.
Proof: Suppose the original population has mean µ and
standard deviation σ. Let N be the number of samples
taken from this population randomly, which is enough to
approximate rank curve so that the new mean is close to µ

within a small constant value a. Thus,
∣∣∣∑ N

i=1 Xi

N − µ
∣∣∣ < a

⇒
∣∣∣∑ N

i=1 Xi−Nµ√
Nσ

∣∣∣ < a
√

N
σ , for σ > 0

Let, Z =
∣∣∣∑ N

i=1 Xi−Nµ√
Nσ

∣∣∣. For large N , Z has standard normal

distribution (Central Limit Theorem). Let b = a
√

N
σ . If b is

known, the Pr[|Z| < b] can be obtained from the table of
standard normal distribution. On the other hand, we can obtain
the value of b for a specified probability. Using the table of
standard normal distribution function, Pr[|Z| < b] = 0.95 if
b = 2.
The approximated mean will be close to the real mean by a

with probability greater than or equal to 0.95 if 2 ≤ a
√

N
σ ⇒

N ≥ 4
a2 σ2.

Thus, the number of required samples to approximate the
percentile rank is O(σ2). �
C. Quality function

As indicated before, the quality function, that is the mapping
between rank and quality, depends on the design of the system,
the characteristics of the nodes, the underlying topology, as
well as the prevailing load conditions. Nonetheless, the quality
function should be well behaved (e.g., monotonicity, well
defined bounds) so that users can predict the expected quality
of streaming sessions based on their rank, and determine their
optimal contribution level at which utility is maximized.

As an illustration, consider a stylized system with a peer
selection scheme where session quality increases linearly with

the number of good suppliers, such that a session with Ns

good suppliers realize a quality of QMAX , and a session with
zero good suppliers realize a quality of QBE . A node that
possess characteristics such as high availability, topological
proximity to the receiver i, etc., is a candidate to become a
good supplier for i. Assume there are Gi such candidates for
node i. However, node i can only select those nodes with
a rank equal to or lower than Ri. Assuming independence
between candidate goodness and rank, node i can only select
up to RiGi to be its good suppliers. Therefore, the quality
function can be expressed as:

Qi(Ri) =

{
QMAX , Ri ≥ Ns

Gi

RiGi

Ns
QMAX +

(
1 − RiGi

Ns

)
QBE , otherwise.

(5)
We plot in Figure 7 the quality functions using (5) as well as

actual streaming quality measurements collected from the in-
centivized version of the PROMISE implementation deployed
on the Planet-Lab test-bed. The wide-area measurements pro-
vide a good fit with (5) when QBE = 0.3, QMAX = 1, and
NS = Gi. The quality function for the PROMISE system
exhibits a positive best-effort quality level for users with zero
score, and quality increases monotonically with user score.

In summary, a rational user computes its score due to
contribution and the cost of contribution. The score is mapped
to a percentile rank that brings the quality of service for the
user through peer selection. Thus, a utility maximizing user
cooperates as long as the contribution brings positive utility
(equation 2) for its streaming session, otherwise it defects.

IV. EVALUATION

We use simulation and wide area experiments over the
Planet-Lab test-bed to evaluate our incentive model. First, we
describe the setup of the experiments, and then we quantify

the quality of service improvements that can be obtained with
the proposed incentive mechanism. We note that with the
incentive mechanism, the peer selection is done based on the
scheme described in Section III, and without the incentive
mechanism, only a few altruistic users act as suppliers for
all streaming sessions. Furthermore, we show that without the
incentive mechanism a streaming session is required to send
more redundant data (to tolerate packet loss) to achieve the
same QoS that the incentive mechanism can provide.

A. Setup

Simulation. We simulate the incentive mechanism using ns-
2 [13]. The PROMISE [8] simulation module is extended to
incorporate our incentive mechanism. The peers are connected
to a network with a topology mimicking the Internet. We use a
hierarchical topology, where the highest level is composed of
transit domains representing large Internet Service Providers
(ISPs). These links have delays on the order of 100 ms, and
the link capacity is varied from 1.5 Mbps to 5 Mbps using
a uniform distribution to simulate the available bandwidth
on these links. Higher bandwidth will require higher number
concurrent sessions to introduce congestion in the network. On
the second level stub domains (small ISPs, campus networks,
and moderate-size enterprise networks) are attached to the
transit domains. These links have delays on the order of 10 ms,
and the link capacity has the same distribution as the transit
domain. These two levels are generated using the Georgia
Tech Internet Topology Mapping tool. At the lowest level,
we probabilistically add the end hosts (peers) to stub routers.
The topologies used in the experiments have, on average, 600
routers and 1200 peers. Each peer is connected to the stub
routers with a link of 1.2 Mbps capacity and 10 ms delay.
Only the end hosts participate in a streaming session either as
a sender or receiver.

Peers’ parameters (offered rate, availability) are chosen to
reflect the heterogeneity in the P2P community. The offered
rate is expressed as a fraction of the streaming rate. In our
experiments, the target streaming rate is T0 = 1 Mbps. The
offered rate is varied from T0

8 to T0
2 . No single peer is

selected to supply at a full rate of a session. However, a user
can contribute to multiple sessions simultaneously if it has
enough resources to do so. The availability is varied from the
range [0.1 - 0.9] using a uniform distribution. A peer with
low availability has a higher chance to go offline during a
streaming session.

In each experiment, we run the model for 1000 − 2000
rounds. In each round, we randomly pick a set of K peers as
receivers for K concurrent sessions. For each session, we then
look for potential suppliers as a candidate set, who have rank
lower than or equal to the rank of the receivers and satisfy
the requirements (rate, availability) mentioned by the receiver.
The best-effort service is given to the new users by providing
an arbitrary number of peers based on the availability of the
peers who want to supply to a low ranked peer. A user with
a higher rank obtains better candidate set that provides better
quality streaming. In PROMISE, 10-20 peers are selected as

a candidate set for each session. A utility maximizing peer
may not choose to be a supplier for any session even if the
request comes from a user with a higher rank. Upon successful
streaming, the suppliers receive appropriate scores.

Planet-Lab. We use PROMISE implementation as an under-
lying streaming system in the Planet-Lab test-bed to conduct
wide area experiments. We use eighteen nodes in the US,
Europe, and Asia as senders and receivers. We build the
underlying network topology and annotate the topology with
link delays with traceroute, and measure available bandwidths
on the paths with Pathload [14]. We use the proposed incentive
mechanism by conducting quality-aware peer selection for the
cooperative users to provide best possible quality, and random
peer selection to provide best-effort service.

B. Quality of Service

The incentive mechanism provides flexibility to select sup-
pliers to the cooperative users to improve the streaming quality.
We design experiments to evaluate the quality a user can
experience with or without the incentive mechanism. With the
incentive mechanism, the system selects best suppliers for each
session and ensures that each supplier has high availability
so that the suppliers do not fail often. Thus, these sessions
experience fewer switching (replacing the failed suppliers) and
the video session is smooth.

First, we measure the expected rate at the receiver. This rate
is the total bytes coming from all senders. Figure 8a shows that
the expected rate is low when there is no incentive mechanism.
When the network is idle, the rate is almost the same with
or without the incentive mechanism. Thus, the gain from an
incentive mechanism is not significant. The difference between
the rates increases when the number of sessions increases.
For K=20 sessions, the rate is 1.1 Mbps with the incentive
mechanism and 0.80 Mbps without the incentive mechanism.
However, after K > 20, the difference of the rates decreases
because the bottleneck is shifted from the hosts to the network.
Figure 8b shows that the network experiences as high as 33%
packet loss for K = 20 without the incentive mechanism.
With the incentive mechanism, the loss ratio is only 10% for
the same number of sessions. The loss ratio curve follows the
same pattern to the rate curve, i.e., the incentive mechanism is
more useful when the network is not idle or heavily congested.

Now, we analyze the perceived quality by the receiver using
the metric defined in (1). Here, packets that miss their play-out
deadlines are considered as lost. Figure 9 shows that the sys-
tem quality Q is close to 1 for less than 10 concurrent sessions
if the incentive mechanism is used. If there is no incentive, the
altruistic users cannot maintain the the system quality to 1 for
the same number of concurrent sessions. Without the incentive
mechanism, the quality depends on the number of altruistic
users who want to supply to the freeloaders. The number of
altruistic users in this experiment is chosen in such a way
that the level of cooperation is almost equal in both cases. In
Gnutella, only 1% users are responsible to supply 99% volume
of data. If we apply that in our experiment, the quality of the
experiments without the incentive mechanism drops to 0.44

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 5 10 15 20 25 30

E
xp

ec
te

d
ra

te
 (

M
bp

s)

Number of Sessions (K)

With incentive
Without incentive

(a) Expected Rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

Pa
ck

et
 lo

ss
 r

at
io

Number of Sessions (K)

With incentive
Without incentive

(b) Packet Loss Ratio

Fig. 8. Expected rate and packet loss ratio to the receiver in ns-2 simulation. The rate is the total bytes received irrespective of their usefulness. The rate is
high and loss ratio is low if the proposed incentive mechanism is used to provide service differentiation.

for K = 10 and 0.06 for K = 30, which is unacceptable for a
steaming session. Moreover, with the incentive mechanism the
load is distributed among all users because everybody acts as
a supplier when necessary, however, this cannot be achieved
without the incentive mechanism.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Q
ua

lit
y

of
 s

tr
ea

m
in

g,
 Q

Number of sessions (K)

With incentive
Without incentive

Fig. 9. Quality of service with or without incentive mechanism in ns-
2 simulation. Without incentive mechanism, a few users cooperate and the
stream quality is poor. The incentive mechanism is not necessary when the
network is idle and not effective when the network is heavily congested.

We conduct experiments for both the Reward and Reward-
Penalty schemes. In both cases, the quality of streaming does
not differ significantly. There is a cost associated with penaliz-
ing users for defection because it is not trivial to identify the
defectors and penalizing users requires more accountability.
Thus, we prefer the Reward scheme over Reward-Penalty.

If the network load is increased, the streaming quality
deteriorates with or without the incentive mechanism. For
higher number of sessions, the quality is low for both cases
because the network is extremely congested. The cooperation
by users does not improve the system performance. Thus, the

incentive mechanism is not necessary when the network is idle
and not effective when the network is heavily congested.

In our Planet-Lab experiments, we observe that the quality-
aware peer selection provided by the incentive mechanism
ensures high quality streaming. The value of Q is close to 1
with a very low variance (Table I). Whereas, in absence of the
incentive mechanism, the system selects suppliers randomly
and the average quality varies from 0.1 to 1 with an average
value of 0.72. Therefore, suppliers selection for a streaming
session really pays off, and it motivates the users to share so
that they can receive high quality streaming.

C. Incentives and FEC overhead

In traditional streaming systems, data redundancy is used
to tolerate packet loss and provide good quality streaming.
We show that the proposed incentive mechanism can even
reduce data redundancy in a streaming session. A streaming
system usually uses forward error correction (FEC) coding,
where n packets are sent instead of k, k < n per block, where
a block is defined by the streaming application as a unit of data
transmission among the senders to a receiver. Any k out of n
packets can reconstruct the block. Thus, the streaming session
can tolerate up to (n − k) packets loss. The FEC overhead is
defined as:

FEC overhead =
n − k

k
(6)

We use video traces of two movies (Star Wars IV and From
Dusk Till Dawn) encoded using MPEG-4. The video traces
have the information of frame number, frame type (I, P, or B),
frame play-out time, and frame length in bytes. We stream
the first 5 minutes of each movie, and both movies have
a frame rate of 25 frames per second. For each streaming
session, we record the arrival time of each single packet.
Then, we determine the number of frames that would have
missed their deadlines. We calculate the number of blocks that

TABLE I

STREAMING QUALITY (Q) IN WIDE AREA EXPERIMENTS OVER PLANET-LAB TEST-BED.

Minimum Average Maximum Variance Standard Deviation
Incentive Mechanism 0.87 0.988 1 0.00044 0.0211
No Incentive Mechanism 0.101 0.718 1 0.10002 0.3162

can not be decoded because fewer than k packets arrived. In
this experiment, we vary the overhead due to FEC to tolerate
packet loss.

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

of

 u
nd

ec
od

ed
 b

lo
ck

s

 FEC overhead (%)

With incentive
Without incentive

Fig. 10. Number of undecoded blocks comparing to the level of redundant
data due to FEC. The result is shown for the movie Star Wars IV in Planet-
Lab setup. In the absence of FEC, introduction of the incentive mechanism
reduces the number of undecoded blocks from 32 to 4.

Figure 10 shows the number of undecoded blocks for Star
Wars IV. It shows that 32 blocks of this movie cannot be
decoded if FEC or incentive mechanism is not used. Each
block has approximately one second play-out time data. Thus,
32 seconds out of 5 minutes will be wasted. However, with
the incentive mechanism only four blocks are undecodable
because of the quality-aware supplier selection. In the absence
of FEC, introduction of the incentive mechanism reduces
the number of undecoded blocks from 32 to 4, which is
a significant reduction. Without the incentive mechanism, a
FEC overhead of 35% would be necessary to achieve the
same improvement of quality that the incentive mechanism
can provide. With the incentive mechanism, only 10% FEC
overhead is necessary to have zero undecoded block at the
receiver, whereas 40% FEC overhead is necessary to achieve
the same goal without the incentive mechanism. Experiments
using the movie From Dusk Till Dawn produce similar results.
These experiments show that if no incentive mechanism is
used, a streaming session has to send more redundant data to
achieve the same quality that the proposed incentive mecha-
nism provides.

V. RELATED WORK

There are several studies in the literature to investigate
incentive mechanisms for the Internet applications and P2P
systems. We study incentive mechanisms for P2P file sharing

and show why a new mechanism is necessary for media
streaming.

File Sharing (Payment, Reputation, and Score). Golle et
al. [3] propose a micro-payment mechanism, where each user
can earn rewards if they upload to other users. The rewards
can be used for future download. Using a game theoretic
model, the authors analyze the equilibria of user strategies
under several payment mechanisms and conclude that there
exists equilibrium for the micro-payment based system. The
objective of this system is to achieve maximum cooperation
from the users. KARMA [15] and the light weight currency
paradigm [4] are examples of payment-based mechanisms.
KARMA uses a single currency as a way of secure trading,
and the light weight currency paradigm allows the users to
trade any resource with their own currencies. Any entity can
introduce its own currency as long as it is acceptable to other
users in the system. In a reputation based system [16], the
users earn reputation by sharing and the reputation determines
peer quality. Downloading from a user with a high reputation
has a higher probability to obtain better service. A score-based
system [10] may allow a user to download multiple times from
other users having lower scores than its own. KaZaA—a score-
based P2P system—provides downloading priority to the users
with high scores over the users with low scores. Our proposed
incentive mechanism relies on scores to determine the user
contribution, however, we map the score to a percentile rank,
which is used in determining the quality of service a user can
obtain.

Probabilistic differential service. Buragohain et al. [7]
propose a game theoretic framework to provide incentives in a
P2P system. In this model, the peer contribution is expressed
in terms of disk space shared per unit time. This contribution
allows a peer to obtain differential service, i.e., more contribu-
tion to the system will earn a higher probability with which its
request will be served by others. If the contribution is small, its
request is more likely to be rejected. The incentive mechanism
eliminates the free riders and increase the overall availability
of the system. The authors show that the system reaches
Nash equilibrium even with peers having different contribution
and benefit parameters. The incentive framework increases
the availability of the resources of the system, however, this
does not provide service differentiation for media streaming,
where quality of the peers is more important than having files
available in streaming applications. We provide a framework
where peer contribution provides higher flexibility to select
good quality suppliers for better quality of service.

Synchronous vs. asynchronous. BitTorrent [17] provides
incentives to the users to download files if they allow simulta-
neous upload by other users. This way the server redistributes

the uploading cost to the downloaders, and a file can be served
concurrently to a large number of users. BitTorrent does not
need any score, token, or reputation computation, and therefore
has the advantage of simplicity. However, the synchronous
upload and download makes the model less suitable for
media streaming because high quality peer selection for all
receivers simulataneously is extremely difficult. For example,
each downloading peer i has to look for peers who can be
a potential uploader. At the same time i has to meet all
the quality requirements (availability, offered rate, and the
characteristics of the network paths) of peer selection for the
uploaders. There might be users in the system who want to
download, however, i might not be a good supplier for their
streaming sessions.

SplitStream [18] utilizes the cooperation among the users to
distribute high bandwidth content in a P2P system. Each user
joins several multicast trees so that it can receive and forward
content from/to other users. This way the forwarding load
is distributed among all participating users. This cooperative
mechanism is extremely useful in a multicast environment
where a large number of users is interested in a streaming
session, and the users want to cooperate synchronously with
each other to receive the content. The synchronous model
is not suitable for video-on-demand type of applications or
streaming rare objects or less popular data. In this paper, our
goal is to design an incentive mechanism that is applicable in
an asynchronous manner, where the contribution and reward
do not need to happen at the same time.

VI. CONCLUSION

Our study shows that there are multiple motivating factors
for having an incentive mechanism in a P2P media streaming
system. First, the streaming quality is poor if the level of coop-
eration is low even when the network is not heavily congested.
Second, unlike traditional file sharing, cooperation from a few
altruistic users cannot provide high quality streaming to its
users in a large system.

We show that a rank-based incentive mechanism achieves
cooperation through service differentiation. In this framework,
the contribution of a user is converted into a score, then the
score is mapped into a rank, and the rank provides flexibility
in peer selection that determines the quality of a streaming
session. Cooperative users earn higher rank by contributing
their resources to others, and eventually receive high quality
streaming. Free riders have limited choice in peer selection,
hence receive low quality streaming. The rank is estimated in
a scalable way without involving all users in the system. Our
experimental evaluation shows that the incentive mechanism
provides near optimal quality (Q ≈ 1) to the cooperative users
until the bottleneck shifts from the hosts to the network. The
incentive mechanism reduces the data redundancy required
during a streaming session to tolerate packet loss. Without the
incentive mechanism, it is required to send more redundant

data to achieve the same QoS that the incentive mechanism
can provide.

In our analysis, we assume that the users of a P2P system
behave like the users of a file sharing system. There is
no empirical data about the users behavior in a streaming
environment. A future direction of this research is to deploy a
streaming system to obtain empirical data, which can be used
to validate and refine incentive mechanisms for a streaming
system.

ACKNOWLEDGMENT

The authors thank Mohamed M. Hefeeda for sharing sim-
ulation module and implementation prototype of PROMISE,
Maleq Khan for his help to prove the proposition, and Nicolas
Christin and the anonymous reviewers for their insightful
comments. This work is supported in part by National Sci-
ence Foundation under ITR awards ANI-0085879 and ANI-
0331659.

REFERENCES

[1] E. Adar and B. Huberman, “Free riding on gnutella,” First Monday,
vol. 5, no. 10, Oct. 2000.

[2] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and analyzing
the characteristics of napster and gnutella hosts,” Multimedia System,
vol. 9, no. 2, pp. 170–184, 2003.

[3] P. Golle, K. Leyton-Brown, and I. Mironov, “Incentives for sharing in
peer-to-peer networks,” in proceedings ACM Electronic Commerce (EC
’01), Tampa, Florida, Oct. 2001.

[4] D. Turner and K. Ross, “The lightweight currency protocol,” Internet
Draft, draft-turner-lcp-00.txt, Sept. 2003.

[5] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Scalable and robust
incentive techniques for P2P networks,” in proceedings ACM Conference
on Electronic Commerce (EC ’04), New York, New York, May 2004.

[6] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Foster, “To share or
not to share: An analysis of incentives to contribute in collaborative
file sharing environments,” in Workshop on Economics of Peer-to-Peer
Systems, Berkeley, California, June 2003.

[7] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic framework
for incentives in P2P systems,” in proceedings P2P, Sweden, Sept. 2003.

[8] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-peer media streaming using CollectCast,” in Proceedings ACM
Multimedia ’03, Berkeley, California, Nov. 2003.

[9] “Planet-lab test-bed,” http://www.planet-lab.org/, 2003.
[10] M. Nowak and K. Sigmund, “Evolution of indirect reciprocity by image

scoring,” Nature, vol. 393, pp. 573–577, 1998.
[11] E. Friedman and P. Resnick, “The social cost of cheap pseudonyms,”

Journal of Economics and Management Strategy, vol. 10, no. 2, pp.
173–199, 2001.

[12] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in proceedings
International World Wide Web Conference, Budapest, Hungary, May.
2003.

[13] S. McCanne and S. Floyd, “Network simulator ns-2,”
http://www.isi.edu/nsnam/ns/, 1997.

[14] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement
methodology, dynamics, and relation with TCP throughput,” IEEE/ACM
Transaction on Networking, vol. 11, no. 4, pp. 537–549, 2003.

[15] V. Vishnumurthy, S. Chandrakumar, and E. Gun Sirer, “KARMA: A
secure economic framework for P2P resource sharing,” in Workshop on
Economics of Peer-to-Peer Systems, Berkeley, California, June 2003.

[16] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-
peer networks,” in proceedings ACM NOSSDAV, California, June 2003.

[17] B. Cohen, “Incentives build robustness in BitTorrent,” in Workshop on
Economics of P2P Systems, Berkeley, California, June 2003.

[18] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” in ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing, New York, Oct. 2003.

