Near Rationality and Competitive Equilibria in Networked
Systems

Nicolas Christin

Jens Grossklags

John Chuang

christin@sims.berkeley.edu jensg@sims.berkeley.edu chuang@sims.berkeley.edu

School of Information Management and Systems
University of California, Berkeley
102 South Hall
Berkeley, CA 94720-4600

ABSTRACT

A growing body of literature in networked systems research relies
on game theory and mechanism design to model and address the
potential lack of cooperation between self-interested users. Most
game-theoretic models applied to system research only describe
competitive equilibria in terms of pure Nash equilibria, that is, a
situation where the strategy of each user is deterministic, and is her
best response to the strategies of all the other users. However, the
assumptions necessary for a pure Nash equilibrium to hold may be
too stringent for practical systems. Using three case studies on net-
work formation, computer security, and TCP congestion control,
we outline the limits of game-theoretic models relying on Nash
equilibria, and we argue that considering competitive equilibria of
a more general form helps in assessing the accuracy of a game the-
oretic model, and can even help in reconciling predictions from
game-theoretic models with empirically observed behavior.
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1. INTRODUCTION

Empirical evidence of phenomena such as free-riding in peer-to-
peer systems [1] or unfairness in ad-hoc networks [19] challenges
the traditional system design assumption that all users of a network
are able and willing to cooperate for the greater good of the commu-
nity. Hence, system architects have become increasingly interested
in considering network participants as selfish [30] or competing
[29] entities. For instance, in an effort to discourage free-riding,
some deployed peer-to-peer systems such as KaZaA or BitTorrent
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[9] rely on simple incentive mechanisms. More generally, as sum-
marized in [13, 26, 30], a number of recent research efforts have
been applying concepts from game theory and mechanism design
to networked systems in an effort to align the incentives of each
(self-interested) user with the goal of maximizing the overall sys-
tem performance.

A cornerstone of game theory and mechanism design is the no-
tion of competitive equilibrium, which is used to predict user be-
havior and infer the outcome of a competitive game. As discussed
in [26], the concept of Nash equilibrium is predominantly used in
system research to characterize user behavior. Assuming each user
obtains a utility dependent on the strategy she adopts, a Nash equi-
librium is defined as a set of strategies from which no user willing
to maximize her own utility has any incentive to deviate [25].

While Nash equilibria are a very powerful tool for predicting
outcomes in competitive environments, their application to system
design generally relies on a few assumptions, notably, that (1) each
participant is infallible (i.e., perfectly rational), and that (2) each
user has perfect knowledge of the structure of the game, includ-
ing strategies available to every other participant and their asso-
ciated utilities. There seems to be a class of problems for which
these assumptions may be too restrictive, for instance, characteriz-
ing competitive equilibria in systems where participants have lim-
ited knowledge of the state of the rest of the network.

As a practical example of the potential limits of a game theoreti-
cal analysis of a networked system solely based on Nash equilibria,
one can argue that, in the case of a peer-to-peer file-sharing system
that does not provide incentives for users to share, the unique Nash
equilibrium leads to the “tragedy of the commons [18],” that is, a
situation where users do not share anything to minimize the cost
they incur, thereby leading the entire system to collapse. The mere
fact that, in practice, some users are sharing files, even in peer-to-
peer systems that do not rely on incentive mechanisms, hints that a
Nash equilibrium is not actually reached.

The argument that Nash equilibria may be too restrictive to char-
acterize networked systems is not entirely new. In [14], Friedman
and Shenker notably argued that equilibria resulting from learn-
ing behaviors were a tool better suited for characterizing how net-
work users share network resources than Nash equilibria. In this
paper, we take a quite different stand, by advocating to consider
competitive equilibria of a slightly more general form than pure
Nash equilibria. More precisely, we argue that using simple exten-
sions of pure Nash equilibria (1) helps to assess the robustness of a
game-theoretic model to small deviations from expected behavior,
thereby providing insight in the accuracy of the model, and (2) may
help reconcile empirical observations with analytical modeling.



We illustrate our point by presenting three case studies, on net-
work formation, security, and TCP congestion control, where out-
comes predicted by Nash equilibria are not entirely correlated by
empirical observations. In each case study, we investigate if and
how more general forms of competitive equilibria can be used to
better describe observed behavior, or if, on the other hand, the
model needs to be refined.

The remainder of this paper is organized as follows. In Section 2,
we provide some background by formally discussing the concept
of Nash equilibrium and its extensions or potential alternatives. In
Section 3, we present our case studies. Finally, in Section 4, we
discuss our findings, outline a possible agenda for future research,
and draw conclusions from our observations.

2. BACKGROUND

We consider strategic interactions (called games) of the follow-
ing simple form: the individual decision-makers (also called play-
ers) of a game simultaneously choose actions that are derived from
their available strategies. The players will receive payoffs that de-
pend on the combination of the actions chosen by each player.

More precisely, consider a set N = {1,...,n} of players. De-
note as S; the set of pure (i.e., deterministic) strategies available to
player 7, and denote as s; an arbitrary member of ¢’s strategy set. A
probability distribution over pure strategies is called a mixed strat-
egy o;. Accordingly, the set of mixed strategies for each player, ;,
contains the set of pure strategies, .S;, as degenerate cases. Each
player’s randomization is statistically independent of those of the
other players. Then, u; represents player :’s payoff (or utility) func-
tion: w; (o, 0—;) is the payoff to player 7 given her strategy (o)
and the other players’ strategies (summarized as o—;). An n-player
game can then be described as G = {N; 3;, X_; ui, u—; }.

Players are in a Nash equilibrium if a change in strategies by any
one of them would lead that player to obtain a lower utility than
if she remained with her current strategy [25]. Formally, we can
define a Nash equilibrium as follows:

DEFINITION 1. Avector of mixed strategieso™ = (o7, ...,05,) €
3 comprises a mixed-strategy Nash equilibrium of a game G if, for

alli € Nandforallo; € i, ui(o;,0%;) —wi(of,0*;) < 0.

A pure-strategy Nash equilibrium is a vector of pure strategies,
s* € S, that satisfies the equivalent condition.

The main advantage of the concept of Nash equilibrium resides
in its simplicity. However, because Nash equilibria rely on very
stringent assumptions on the capabilities and objectives of each
player, they can predict counter-intuitive or unrealistic outcomes.
Thus, the economics community has provided an increasing num-
ber of refinements to strengthen the concept of Nash equilibrium
(e.g., perfect vs. proper equilibria). Similarly, some have investi-
gated how to weaken the rational choice assumptions on which the
Nash equilibrium concept is built: a rational player is expected to
demonstrate error-free decision-making, to have perfect foresight
of the game and to be unbounded in her computational abilities. In-
tuitively, players such as network users (which are not necessarily
perfectly rational) or automated agents (which can be faulty, due to
software bugs or misconfiguration, or have limited computational
resources) will likely deviate from these rigid assumptions.

As an illustration of how the assumptions required in a Nash
equilibrium may need to be relaxed in practice, consider, an expe-
rienced player whose strategy choice is almost perfectly correlated
with a Nash prediction of a game but always contains a small er-
ror. She is playing in an auction with an asymmetry between the
expected cost of overshooting and undershooting the Nash solu-
tion. If overshooting is less costly, the player’s strategy will most

likely contain a small upward bias. If a substantial part of the other
players shares this marginal bias the outcome of the auction can
be surprisingly far away from a Nash prediction [15]. Similarly,
in a sealed-bid auction the Nash equilibrium outcome predicts that
a player with a lower valuation will only sometimes win the auc-
tioned good. However, this outcome is more likely if players share
small imperfections in the execution of their Nash strategies [21].

Such systematic and non-systematic deviations and their out-
comes have been motivation to formulate more generalized models
of strategic behavior that include the notion of the Nash equilib-
rium as a special case. In particular, to relax the assumption of per-
fect rationality required by the concept of Nash equilibrium, some
have introduced the concept of bounded rationality. Players that
are bounded rational are not necessarily picking the best strategy
available across the entire decision space, but instead are allowed
to make small errors on a number of levels, such as the evaluation
of the payoffs associated with a strategy, the assessment of the best
available strategy, or the execution of a specific strategy.

Some techniques to model bounded rationality introduce (possi-
bly small) amounts of noise into the decision-making process. As
an example, the noisy introspection model [16] relies on (possi-
bly many) layers of speculation on the beliefs about other players’
beliefs. When all beliefs are perfectly correct, adding layers of
speculation can only converge to a Nash equilibrium. However, the
authors of [16] show that, by including some small (noisy) uncer-
tainty in the conjectures about other players beliefs, the game can
produce outcomes significantly different from a Nash equilibrium.

Another model of equilibrium with bounded rationality, called
Quantal Response Equilibrium, or QRE [23], has been used to
characterize equilibria in games where users make errors on the
computation of the payoffs associated with a given strategy. Given
two strategies and their associated payoffs (u1,u2), with u; >
uz, an a priori rational player may choose the strategy yielding
ug if she makes errors (e1,e2) in the computation of the pay-
offs (u1,uz2) such that u; + €1 < w2 + €2. McFadden showed
that, in such a context, one could express the probability of choos-
ing the strategy yielding u1 as a power function Pr(choose 1) =
er1 /(eM1 + e*2), where X is a factor that characterizes the prob-
ability of the player making a mistake in the choice of the “right”
strategy [22]. Namely, A = 0 indicates that the player chooses
at random regardless of the payoffs, while A — oo converges to
the Nash behavior of always selecting the strategy with the higher
payoff. At the Quantal Response Equilibrium, the vector of mixed
strategies o* used by the players satisfies o* = T'(u(c™)), where
u(.) is the function that maps a set of mixed strategies to a set of
payoffs, and T'(.) is the function that maps a set of payoffs to a set
of mixed strategies.® Thus, a QRE results in a set of conditions on
the power functions.

Models such as QRE or noisy introspection are very useful as
an empirical structure for uncovering features of payoffs from field
data, or to obtain relationships between observables and primitives
of interest [17]. In other words, models and equilibrium concepts
for bounded rationality can help reconcile data observed experi-
mentally with a game theoretic analysis.

For the preliminary analysis we present in this paper, we will fo-
cus on a particular type of bounded rational behavior, called near
rationality [3, 27]. In near rational equilibria a player who is not
perfectly maximizing her utility cannot improve her payoff by a
substantial amount by playing her Nash strategy more accurately.
While the personal losses for a player are potentially very small,
the equilibria derived often represent substantial departures from a

1The Brouwer fixed point theorem indicates that such an equilib-
rium exists as soon as the function T'(e(.)) is continuous.



prediction based on perfect Nash optimizing behavior. As we will
discuss in the remainder of this paper, models of near rationality
are appropriate for the description of empirical phenomena but can
also contribute explanations and predictions of strategic behavior.
In addition, we will also illustrate how models of near rational-
ity can be used to assess the accuracy and robustness of a given
game-theoretic model, which can possibly lead to refinements of
the model.

3. CASE STUDIES

In this section, we present three case studies on network forma-
tion, security, and TCP congestion control. For each of the case
studies, we describe the interaction between the different partici-
pants in terms of a game, and note the discrepancies between the
game outcome as predicted by a Nash equilibrium and the behav-
ior observed empirically. Allowing for near rationality allows us to
determine if the outcome is highly sensitive to small variations in
player behavior, in which case the model might need to be refined.
In cases where the model seems sufficiently robust, we then discuss
whether considering near rational players can lead to more accurate
predictions.

3.1 Preiminaries

Before we delve into the details of each case study, we discuss
in more details the equilibrium concept that we use for the analysis
in the remainder of this paper. As we mentioned before, we are
interested in assessing if near rationality can help us build better
game theoretic models for networked systems. Here, we will focus
on a simple, but powerful model of near rationality, called the -
equilibrium [27].

The e-equilibrium concept [27] is relaxing the conception of a
fully rational player to a model where each player is satisfied to
get close to (but does not necessarily achieve) her best response to
the other player’s strategies. No player can increase her utility by
more than e by choosing another strategy. Therefore, we locate an
e-equilibrium by identifying a strategy for each player so that her
payoff is within ¢ of the maximum possible payoff given the other
players’ strategies.

Formally, an e-equilibrium can be defined as follows:

DEFINITION 2. Avector of mixed strategies c° = (o1, ...,0p,) €
Y. comprises a mixed-strategy e-equilibrium of a game G if, for
alli € N, forall o; € %, and a fixed £ > 0, u;(0y,0°;) —
ui(of,0%;) <e.

A pure-strategy -equilibrium is a vector of pure strategies, s° € S,
that satisfies the equivalent condition. If we allow ¢ = 0 this con-
dition reduces to the special case of a Nash equilibrium. Thus, one
can consider e-equilibria as a more generalized solution concept
for competitive equilibria.

We emphasize again that other equilibrium concepts, including
bounded rationality models, are probably equally, if not more, use-
ful in modeling and analyzing networked systems. However, since
the main objective of this paper is to show how equilibrium con-
cepts that are conceptually quite close to Nash equilibria can help
improve the game theoretic analysis of networked systems, we de-
fer the discussion of the applicability of more elaborate models
of near (or bounded) rationality to future work, and will use e-
equilibria for the analysis in the remainder of this section.

3.2 Network Formation

For our first case study, we briefly discuss network formation by
self-interested parties. Following seminal work in economics [20],

network formation has lately received relatively significant atten-
tion in the networking research community. We refer the interested
reader to recent studies, such as [7, 11], for an in-depth discussion
of the problem. Here, our only focus is to show how considering
near rational behavior, as opposed to Nash behavior, can help us
validate or invalidate a game theoretic model.

We define a network as a set of n nodes connected by a set of
k directed links (where & < 2n(n —1)). Each node is used to store
items that are of interest to other nodes. We follow the generic
network model described in [6] where each node can request items,
serve items, or forward requests between other nodes. As in [6], we
assume shortest-path routing. Using a few simplifying assumptions
(e.g., all nodes are considered to have the same capabilities, all
links have the same establishment cost, and requests for items are
uniformly distributed over the entire network), the authors of [6]
express the cost associated to each node i as

Ci = 5 +1Ed; j + rEb; (i) + m deg(i) ,

where Ed; ; is the expected value of the topological distance (hop-
count) between node 7 and another node j, E'b; (%) is the expected
value of the probability that node 7 is on the path between two
arbitrary nodes j and k, and deg(z) is the out-degree of node 1,
that is, the number of nodes node 7 links to. The constants s, [, r
and m represent the nominal costs associated with storing an item,
retrieving an item one hop away, routing a request between two
other nodes, and maintaining a connection to another node, respec-
tively. From this cost model, we can immediately define the utility
of node 1, u;, as

U; = —Ci . (1)

Assume that nodes can choose which links they maintain, but do
not have any control over the items they hold, and honor all routing
requests. In other words, nodes are selfish when it comes to link
establishment, but are obedient once links are established.

PrRoPOSITION 1. With the utility function given in Eq. (1), if
m < l/n, the fully connected network where each node links to
every other node is a unique pure Nash equilibrium.

PROPOSITION 2. If m > [/n, the star-shaped network, where
all links connect to or from a central node, is a pure Nash equilib-
rium.

Propositions 1 and 2, whose proofs are in Appendix A, tell us
that, if maintaining links is cheap, or if the network is small, the
only Nash equilibrium is the fully connected network. If maintain-
ing links is more expensive, or if the network is large, a star-shaped
network is a possible Nash equilibrium.? While the star may not be
a unique Nash equilibrium, the high aggregate utility of the star [6]
suggests it may dominate other potential Nash equilibria. We note
that the authors of [20] obtain comparable results using a slightly
different cost model.

Thus, if the model is accurate, and if nodes behave fully ratio-
nally, we should expect predominance of fully-connected or star-
shaped networks in practice. However, if instead of considering
Nash equilibrium, we now consider an e-equilibrium, then, for any
m € [l/n—e,1/n+¢], any network topology created by adding an
arbitrary number of links between peripheral nodes to a star-shaped
network constitutes an e-equilibrium. (This can be proven by sim-
ply including ¢ in all the derivations of Appendix A.) Additionally,

2In the limit case where m is exactly equal to I/n, any network
resulting from adding an arbitrary number of links between periph-
eral nodes to a star-shaped network constitutes a Nash equilibrium.



if, to account for failures in link establishment due for instance to
lossy channels, we allow nodes to use mixed strategies instead of
being restricted to pure strategies, we conjecture that the range of
possible values for m such that any network “between” a star and
a full-mesh is an e-equilibrium is much larger than 2e.

In other words, even a detailed cost model as proposed in [6]
appears to be highly sensitive to small changes in player behav-
ior. This high sensitivity hints that the game model needs to be
refined, an intuition which is corroborated by empirical measure-
ments. While star-shaped topologies or full meshes can indeed be
found in existing networks (e.g., many small local area networks
use star topologies), measurement studies of Internet topologies
exhibit much more varied results [12]. Among the reasons why
Internet topologies do not solely consist of an interconnection of
star-shaped and fully connected networks, one can cite capacity
constraints [7] or monetary incentives, which are not included in
the cost model described above.

While proposing a game-theoretic model that captures these ad-
ditional factors is outside of the scope of this paper, we summarize
the outcome of this first case study as follows: considering near
rationality instead of perfect rationality can help us evaluate the ro-
bustness of a model to small perturbations in the players actions. If
the model seems to lack robustness, its chances of being an accurate
model of reality decrease.

3.3 Protection Against Security Threats

With our second case study, we hope to show that slightly mod-
ifying the description of a game to account for near rationality al-
lows to significantly improve the predictive quality of the game
when compared to empirically observed behavior. To that effect,
we look at the level of security users choose in a network subject
to a security threat. Specifically, we focus on protection against
potential distributed denial of service (DDoS) attacks. In the first
stage of a DDoS attack, an attacker looks for a (set of) machine(s)
whose control she can easily seize, to use as a platform to launch
an attack of larger magnitude. For instance, by obtaining total con-
trol of a machine on a network, an attacker may be able to retrieve
passwords and gain access to more secure machines on the same
network.

We model here a network of n users, who are all potential tar-
gets in the initial stage of a DDoS attack. If we characterize the
level of computer security that each user ¢ adopts by a variable s;,
the user(s) with the lowest s; (i.e., $i = Smin = min;{s;}) will
be compromised. We assume that each user can infer the security
level s; used by every other user (e.g., by probing), and no finite
security level s; can be selected to guarantee a protection against
all attacks. We further assume that the cost of implementing a secu-
rity policy s; is a monotonic increasing function of s;. Specifically,
to simplify the notations, we consider here that each user 7 that is
not compromised pays s; to implement their security policy. The
compromised user(s), say user j, pays a fixed penalty P > s; (for
any s;), independent of the security level smin She has chosen.

While very simplified, we conjecture this game is a relatively
accurate model of the first stage of DDoS attacks that have been
carried out in practice [10].2 We defer the study of the deployment
of the attack beyond the first stage to future work. Also, we stress
that, while the size n of the network does not play a central role in

3While this type of attack shares some similarities with worm prop-
agation, notably searching for insecure machines [24], a worm typ-
ically propagates by infecting all machines on a network that are
below a certain, fixed, security level, which is different from our
hypothesis that only the machines with the lowest level of security
are compromised.

our model, we expect the scenario we describe to be more realistic
in the case of a small corporate or university network, that is when
n is reasonably small.

PROPOSITION 3. The game described above has a unique pure
Nash equilibrium, where all users choose an identical security level
S = P.

Proposition 3, whose proof we derive in Appendix B, tells us that,
for a Nash equilibrium to hold, all users have to choose the highest
level of security available. As in the first case study, one could con-
sider pure e-equilibria to check the sensitivity of the model to small
changes in player behavior. It can be shown that, for this specific
game, pure e-equilibria produce results very close to Proposition 3,
and thus the model seems reasonably robust to small perturbations.
In fact, due to the symmetry of the game, one can conjecture that,
regardless of the value of the penalty P, all users would implement
the same security level in a pure equilibrium.

However, available data from large networks, e.g., [8], docu-
ments that different systems present highly heterogeneous security
vulnerabilities, which in turn indicates that implemented security
levels are highly disparate across machines. Hence, in the context
of the security game we just described, a Nash equilibrium does not
seem to accurately describe observed behavior.

Some of the possible explanations for the heterogeneity of the
implemented security levels can be captured by more elaborate
equilibrium models. In particular, (1) users have incomplete in-
formation on the levels of security deployed by other users, (2)
the perceived benefit of installing security patches may be smaller
than the overhead patching incurs, and (3) some users may be gam-
bling (knowingly or not) on the seriousness of the security threats
they face. These three arguments all make the case for considering
e-equilibria (to account for (1) and (2)) with mixed strategies (to
account for (2) and (3)), rather than a pure Nash equilibrium.

PROPOSITION 4. There exist mixed-strategy e-equilibria with
e < P/4 where all chosen security levels are distributed over the
interval [0, P].

Proposition 4, which we prove in Appendix B, indicates that con-
sidering e-equilibria with mixed strategies allows us to predict large
dispersion of the chosen security levels, even for relatively low val-
ues of . This result seems to be more in line with the available
measurement data. We further note that analogous results have
been recently derived to quantitatively model price dispersion phe-
nomena [5], where assuming a Nash equilibrium likewise fails to
corroborate empirical measurements.

We emphasize that Proposition 4 only states that near rational-
ity can explain dispersion. In particular, the proof of Proposition 4
we present in Appendix B uses a specific distribution function to
show that there exist mixed e-equilibria, with ¢ relatively small,
that result in dispersion of the security levels over the entire spec-
trum (0, P). However, we do not claim that the specific distribution
used in the proof is a realistic characterization of user behavior; in
fact, we believe that further work is required to provide a distribu-
tion function that accurately describes the mixed strategies imple-
mented by each user.

Additionally, one can direct two critiques at the discussion on the
security game we just presented. First, the discrepancies between
the behavior predicted by a Nash equilibrium and that observed in
practice may be due to an inaccurate game model, rather than from
assuming a given type of equilibrium. Second, one can argue that
while the assumption of perfect rationality, as required in a pure
Nash equilibrium, is very debatable when strategies are selected by



humans (such as in the security game), perfect rationality is a much
more reasonable assumption in the case of automated agents. How-
ever, neither of these arguments invalidates our case for consider-
ing near rationality as an additional tool to improve game theoretic
modeling of networked systems.

3.4 TCP Congestion Control

The last case study we propose has for object to further our
case that considering near rationality is helpful in refining game-
theoretic models for networked systems. This third case study
relies on a game-theoretic analysis of the TCP transport protocol
[2]. Each TCP sender relies on an additive-increase-multiplicative-
decrease (AIMD) algorithm to adjust its sending rate in function of
the congestion experienced on the path from sender to receiver.

In [2], Akella et al. present a game-theoretic analysis to model
competition between different TCP senders for three of the most
popular variants of TCP, namely, TCP Tahoe, TCP Reno and TCP
SACK. In the TCP Game they describe, players are the TCP sources
(z € {1,...,n}), which are allowed to adjust their individual ad-
ditive increase («;) and multiplicative decrease (3;) parameters. In
the TCP Game, the utility of each player is equal to her goodput,
which is defined as the total amount of data transfered over a time
interval, minus the amount of data that had to be retransmitted (pre-
sumably because of losses in the network) over the same time in-
terval.

One of the insights presented in [2] is that, for TCP SACK, a pure
Nash equilibrium results in o; — oo (infinite additive increase) if
(i is held fixed, while 3; — 1 (no multiplicative decrease) if «; is
held fixed. Simply stated, if all players in a TCP SACK network
were behaving according to a Nash equilibrium, they would simply
turn off congestion control, which would likely result in the net-
work suffering from complete congestion collapse. However, TCP
SACK is increasingly deployed on the Internet [4], and yet, we
do not observe congestion collapse phenomena due to misbehaving
TCP sources.*

One of the possible reasons proposed by the authors of [2] for
the continued stable operation of the Internet is that a given user
may face technical difficulties to modify the behavior of her ma-
chine to behave greedily. We submit this potential explanation can
be partially captured by considering an e-equilibrium instead of a
Nash equilibrium. The cost of modifying the behavior of a given
machine can indeed be viewed as a switching cost, to be included
in the factor .

For simplicity, we assume here that players can only modify their
additive increase parameter «;. (An analogous study can be carried
out if we allow changes to 3;.) The authors of [2] show that, with
TCP SACK, player #’s utility (goodput) is given by
B CA —+ (67} ’

where ¢ denotes the total capacity (bandwidth-delay product di-
vided by the round-trip-time) of the bottleneck link, and

A:ZOC]'.
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Therefore, having an e-equilibrium implies that, for any o,

wi(og, a—;) — ui(o, a—;) < e,

*In fact, the authors of [2] point out that the Nash equilibria for TCP
NewReno and TCP SACK are similar. TCP NewReno and TCP
SACK combined currently account for an overwhelming majority
of all traffic on the Internet, which hints that the observed stable
operation of the Internet probably does not result from having a
mix of different TCP variants in the network.

so that

Ala — o)
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If we allow «; = 0 and o — oo, an e-equilibrium can only oc-
cur for e > ¢, that is, when ¢ is larger than the maximum utility
achievable. In such a scenario, ¢ is so large that all players select a
value for their parameter «; at random.

Adding the assumption that variations of «; are bounded leads
to much more interesting results.® Specifically, let us impose o, —
a; < K for K € N. For simplicity, let us set the initial values for
«; to the default value in TCP implementations, that is, o; = 1 for
all i. Then,we have A = n —1and 0 < o} < K + 1. Substituting
in Eq. (2), we have a e-equilibrium as soon as

e>c—.
n
Hence, in a network with a large number of TCP senders, the de-
fault TCP implementation can be an e-equilibrium for small values
of . This is one of the possible explanations why the predicted
Nash behavior that all users would turn off TCP congestion control
primitives is not observed.

4. DISCUSSION

We have shown through three case studies that considering com-
petitive equilibria of a more general form than pure Nash equilibria
can be beneficial in systems research. In particular, we discussed
how allowing players to slightly deviate from their optimal utility
can help reconcile game-theoretic models and observed player be-
havior.

The first case study on network formation showed how slightly
relaxing the assumption that the players are perfectly rational was
useful in assessing the sensitivity of a game theoretic model to
small perturbations, thereby helping to evaluate its likelihood to
be a realistic model. The second case study on the implementation
of security policies showed how the interaction of uncertainties in
the decision making process and the payoff evaluation could be
used to explain empirical behavior. The third case study on TCP
congestion control showed how combining refinements to a model
description with a relaxation of the assumptions in force by em-
ploying a more generalized equilibrium concept can improve the
match between the (analytically) predicted outcome and the (em-
pirically) observed behavior.

From a system design perspective, we note that, even in games
in which the actions of each player resulting in a pure Nash equilib-
rium are undesirable from the system designer’s perspective, near
rational players may actually settle for a desirable outcome. This is
a possible explanation why the Internet does not suffer from con-
gestion collapse, despite the inefficiency of the Nash equilibrium
in the TCP SACK game. Conversely, potentially desirable out-
comes associated with a Nash equilibrium may prove difficult to
reach unless all players are perfectly rational. The security game
we described presents an instance of such a phenomenon. Thus, it
appears that taking into account uncertainty factors can be useful in
both game specification and mechanism design.

SNote that there are several possible justifications for bounding the
variations on «;. For instance, because obtaining perfect knowl-
edge of the state of the entire network is difficult (or impossible)
for a given user, each user may instead incrementally probe the net-
work to discover her optimal setting for «;. Such a probing behav-
ior can be captured as a repeated game where, for each repetition,
o} — a; < K. This type of model thus presents some similarities
with the learning behavior that is thoroughly studied in [14].



An alternative to modeling near rationality is to refine the game
specification, to capture all factors with any conceivable influence
on the game outcome. However, we argue that the two approaches
are not exclusive. In fact, as shown in the first case study, refine-
ments to the game description are probably of interest when the
near rationality assumption yields substantial deviations from the
outcome predicted by a Nash equilibrium. Research on bounded-
reasoning and bounded-optimality models [28] provides a solid
framework for such refinements.

As a follow-up on our case studies, we are interested in gathering
experimental data, through user surveys, on how security levels are
chosen in practice, and in investigating how well this data can be
described using game-theoretic models. We are also planning on
conducting simulation studies to assess the actual impact of uncer-
tainties and of mixed strategies on network formation.

Last, we believe that this research has uncovered a few open
problems that may warrant future investigation. First, our case
studies seem to show that considering other types of equilibria be-
sides Nash equilibria can help expand the applicability of game-
theoretic models to networked systems. While the e-equilibrium
used in this paper is an interesting tool, many other equilibrium
models have been investigated in the literature, e.g., [3, 16, 23].
We conjecture that different types of equilibrium may be appropri-
ate for different networking problems, and believe that providing
a classification of networking problems according to the specific
types of equilibrium that best characterize them would be valuable.

More generally, one can also ask how a game-theoretic model
can capture that the rationality of each participant may vary across
users: some users may be obedient, some others may be fully ratio-
nal, some may be faulty [13]. Finding if and how game-theoretical
models can accommodate heterogeneous populations of players may
help us design better systems, and certainly poses a number of in-
teresting research questions.
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APPENDIX
A. PROOFSOF PROPOSITIONS1AND 2

Here, we first show that the fully connected network is the only
Nash equilibrium if and only if m < [/n, before showing that, if
m > [/n, the star-shaped network characterizes a Nash equilib-
rium.

PROOF OF PROPOSITION 1. In a fully connected network, no
node can create additional links. If a given node 7 removes one of
its links, deg (i) decreases from (n— 1) to (n — 2), but, at the same
time, one of the nodes i’ # i is now at a distance of 2 from 7. Thus,
Ed; ; increases from 1 to

n—1 2 1
+E=1+4-,
n n

Ed;; = -
and the difference in utility for node 7, between the strategy of re-
moving one link and the strategy consisting in maintaining all links,
is m — [ /n. To have a pure Nash equilibrium, we therefore need to
have m — I/n < 0, which is true if and only if m < [/n.

Suppose now that we have m < I/n, and a network that is not
fully connected. In particular, consider that a node ¢ can decide
whether to create a link to another node i’ # i. Before addition of
the link ¢« — ¢/, ¢" is at a distance 2 < d; » < n — 1 of &. After
creation of the link ¢ — 4’, ¢’ is at a distance 1 of 4. Thus, by creat-
ing the link i — ¢', Ed; ; at least decreases by (2 — 1) /n = 1/n.
Adding the link ¢ — 4’ also results in deg(z) increasing by one, so
that the addition of the link ¢ — 4’ eventually results in a change
in the node 4’s utility equal to —m + I /n, which, by hypothesis, is
strictly positive. Hence, node 7 always has an incentive to add links
to nodes it is not connected to. Using the same reasoning for all
nodes, we conclude that the fully connected network is the unique
Nash equilibrium if m < I/n. [

Consider now a star-shaped network, where all links connect to
or from a central node, say node 0, and assume that m > I /n.

PROOF OF PROPOSITION 2. Node 0 is fully connected to the
rest of the network, and therefore cannot create additional links. If
node 0 removes one of its links, one of the n — 1 other nodes be-
comes unreachable, which implies Edo ; — oo, and ug — —oo.
Thus, node 0 has no incentive in modifying its set of links. Like-
wise, peripheral nodes do not remove their (only) link to the central
node, to avoid having their utility u; — —oo.

Suppose now that a peripheral node 7 creates an additional link to
another peripheral node 3" # i. An argument identical to that used
in the proof of Proposition 1 shows that the addition of the link
i — 4’ results in a change in the node i’s utility equal to —m +1/n.
Here, however, m > [/n, so that —m+1/n < 0, and node ¢ has no
incentive in adding the link ¢ — ¢’. Thus, the star-shaped network
is a pure Nash equilibrium, which may not be unique. [

B. PROOFSOF PROPOSITIONS3 AND 4

We first consider that users are only allowed pure strategies, and
prove Proposition 3.

PROOF OF PROPOSITION 3. Without loss of generality, we as-
sume that users {1,...,k}, with 1 < k < n, choose a security
level smin < s; forall i € {k + 1,...,n}. Thus, each user ¢ for
i € {1,...,k} is compromised, and has a utility u; = —P. Users
ini € {k+1,...,n} cannot be compromised because s; > Smin
and therefore have a utility u; = —s;.

Suppose auseriin{1,...,k} were to increase her security level
t0 $; = smin+h for b > 0. User 4’s utility would become —smin —
h. However, because the original constellation of security levels
forms a Nash equilibrium, we know that such a change of strategy
results in a decrease of user 4’s utility for any A > 0. That is, for
any h > 0,

—Smin —h+P <0,

which reduces to smin > P — h forany A > 0, so that smin >
P by continuity. By hypothesis, smin < P, which implies that
Smin = P. Since for any 4, smin < s; < P, we obtain k& = n,
and, for any 4, s; = P is the only possible Nash equilibrium. The
utility of each user is u; = — P, and cannot be increased by picking
a different security level, which confirms that s; = P for all 4
constitutes a Nash equilibrium. [

Suppose now that users choose their security level probabilisti-
cally. More precisely, the probability that user ¢ picks a security
level s; below a value s is characterized by the cumulative distri-
bution function (c.d.f.) Fs, (s) = Pr[s; < s].

PROOF OF PROPOSITION 4. Consider the following continuous
cd.f. Fy,(s):

0 if s <0,
1
Fo(s)=q9 1-(1-2)" 71 ifo<s<P, ®)
1 ifs > P.

We use E'u;(s) to denote the expected value of the utility w;(s) in
function of a security level s. Because u;(s) = — P if all users j #
i choose security levels higher than s, and u;(s) = —s otherwise,
we have

Eu;(s) = —P(Pr[s; > s])" " —s(1 — (Pr[s; > s])" "),
which can be expressed in terms of F, (s) as
Bui(s) = —P(1 = Fy (s)" " = s(1 = (1= Fe,(5))" ") . (4)

Substituting F%, (s) by its expression given in Eq. (3), Eq. (4) re-
duces to

Eu;(s)=—P+s (1— %) .

A study of the variations of E'u;(s) in function of s € [0, P] indi-
catesthat Eu;(s) > Eu;(0) = —Pandthat Eu;(s) < Eu;(P/2),
with Eu;(P/2) = —3P/4. Thus, if we have ¢ = P/4, any vari-
ation of the expected utility is smaller ¢, which characterizes an
e-equilibrium. In other words, we have shown, by providing a
specific c.d.f. F,(s), that there exist e-equilibria with e < P/4
where the security levels s; can be spread out over the entire in-
terval [0, P]. Note that we only present an existence proof here.
It is unclear whether the chosen c.d.f Fi, (s) is an accurate depic-
tion of how security levels are chosen in reality, and it is likewise
entirely possible that there exist other distributions of the security
levels over [0, P] that result in e-equilibria for e < P/4. O



