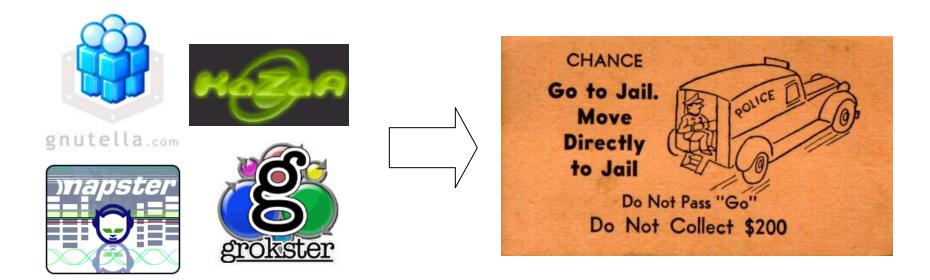
Economics of Peer-to-Peer Systems

John Chuang


School of Information Management and Systems University of California at Berkeley chuang@sims.berkeley.edu http://p2pecon.berkeley.edu/

Academia Sinica 2004 Summer Institute on P2P Computing August 3 2004

Collaborators

- Nicolas Christin
- Yang-hua Chu (CMU)
- Michal Feldman
- Jens Grossklags
- Ahsan Habib
- Kevin Lai (HP)
- Christos Papadimitriou
- Ion Stoica
- Hui Zhang (CMU)

Economics of P2P?

- This talk is <u>NOT</u> about the economic impact or legitimacy of P2P file sharing
- See:
 - Oberholzer & Strumpf, P2P's Impact on Recorded Music Sales.
 - Gopal, Bhattacharjee, Lertwachara, Marsden, Impact of Online P2P Sharing Networks on the Life Cycle of Albums on the Billboard Chart.

Economics of P2P

- This talk is about economics-informed design of P2P systems
 - Understanding system characteristics
 - Quantifying disincentives
 - Free-riding: individual rationality vs. collective welfare
 - Whitewashing: cheap pseudonyms
 - Information asymmetries: hidden info, hidden action
 - Designing incentive mechanisms
 - Tokens, reputation, taxation, contracts, etc.

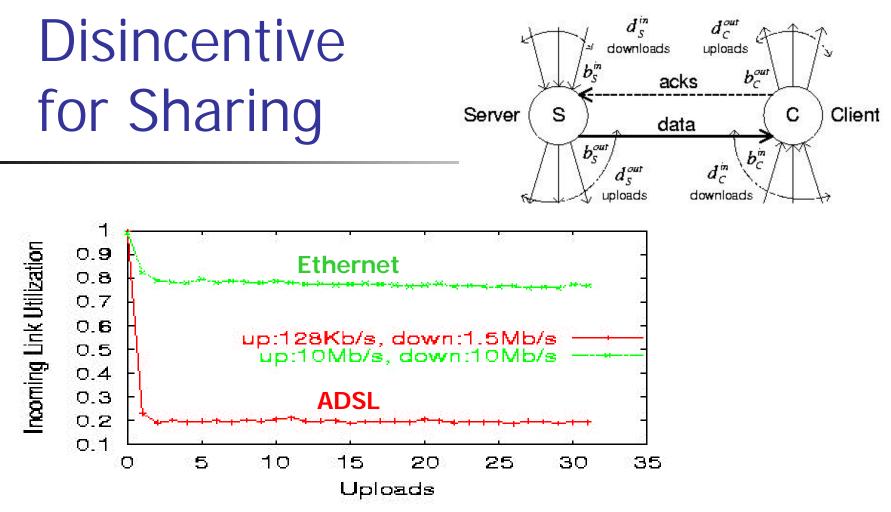
Outline

- P2P system characteristics
 - Disincentives in sharing \rightarrow free-riding
- Incentive mechanisms
 - Tokens, reputation, taxation, contracts, ...
 - Challenges: whitewashing, collusion, etc.
- Case study:
 - On-demand P2P streaming
 - Live event P2P streaming
- Information Asymmetry
 - Hidden action in multi-hop routing

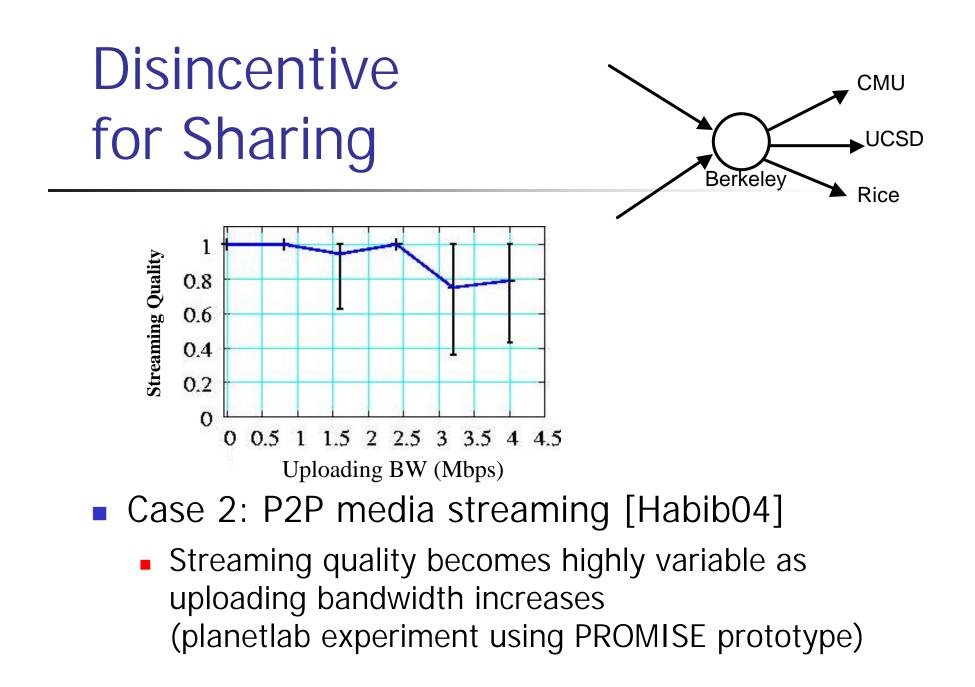
Diversity of P2P Systems

- Distributed storage, search, and retrieval
 - File-sharing: Napster, gnutella, kaZaA, Overnet, bitTorrent, ...
 - Anonymity/Persistence: Eternity, Freehaven, FreeNet, Publius, ...
 - DHTs: Chord, CAN, Pastry, Tapestry, OpenHash, ...
- Distributed computation
 - Globus (grid), Entropia, SETI@Home, etc.
- Communications
 - Connectivity: mobile wireless ad-hoc networks, "rooftop" networks
 - Redundancy: resilient overlay networks
 - Anonymity: onion-routing, MIX-net, Crowds
 - Distributed multimedia: skype (VoIP), ESM/Narada, Splitstream (live streaming), PROMISE (on-demand streaming)
- More at: http://www.openp2p.com/pub/q/p2p_category

P2P System Characteristics


- What do P2P systems have in common?
 - No infrastructure or service provider: rely on contributions by individual peers
 - Hidden action: difficult to monitor or enforce cooperation
 - Ad-hoc communities: highly dynamic memberships; interactions with strangers

Free-riding


- Fundamental tension between individual rationality and collective welfare
 - System utility derived solely from peer contributions
 - Contributions not costless \rightarrow disincentives to share
- Rational peers choose to free-ride, i.e., consume but not contribute
- Free-riding prevalent in file-sharing networks [Adar00; Sariou02]
 - 66% of gnutella peers share no files
 - 10% of peers share 87% of files
 - 20% of peers share 98% of files
- **[Adar00]: "Tragedy of digital commons"?**

Questions

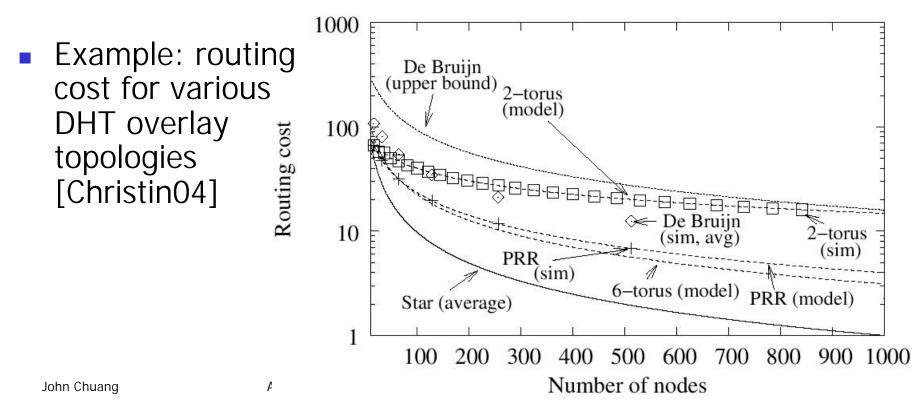
- What are the costs of participating in a P2P network? How significant are the disincentives for sharing (potential legal liability notwithstanding)?
- What are the effects of free-riding on P2P system performance? Are P2P systems doomed to failure due to non-cooperation?
- How do we design incentive mechanisms to encourage cooperation in P2P systems?

- Case 1: P2P file-sharing [Feldman03]
 - Incoming link utilization degrades by 20-80% when simultaneously uploading (ns-2 simulation)
 - Contention between TCP data and ACK

General Cost Model [Christin04]

- A given node u requests an item, serves a request, or route requests between other nodes: $L_u = \sum_{v \in V} \sum_{k \in K_v} l_{u,k} t_{u,v} \Pr[Y = k]$
 - Latency cost (benefit)
 - Service cost
 - Routing cost

$$R_u = \sum_{v \in V} \sum_{w \in V} \sum_{k \in K_w} r_{u,k} \Pr[X = v] \Pr[Y = k] \chi_{v,w}(u)$$


Topology maintenance cost

 $S_u = \sum_{k \in K_u} s_{u,k} \Pr[Y = k]$

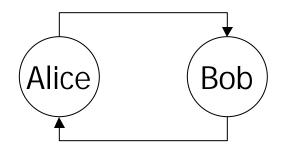
 $M_u = m_u \deg(u)$

Participation Cost

Cost can be <u>highly variable</u>, dependent on many factors, e.g., item popularity, network topology, routing algorithm, even node ID!

What can we do?

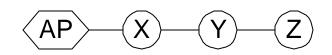
- Rely on altruism
 - No intervention necessary if societal generosity sufficiently high [Feldman04b]
 - Warm-glow theory: altruistic action may be part of rational behavior [Andreoni90]
- Enforcement
 - Obedient vs. malicious peers
 - Often circumvented by determined hackers
- Incentives
 - Rational users respond to reward and/or punishment
 - Security requirements still remain

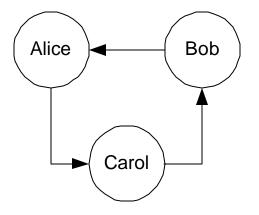

Outline

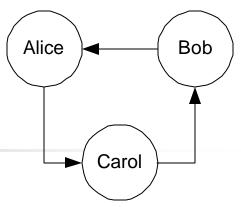
- P2P system characteristics
 - Disincentives in sharing \rightarrow free-riding
- Incentive mechanisms
 - Tokens, reputation, taxation, contracts, ...
 - Challenges: whitewashing, collusion, etc.
- Case study:
 - On-demand P2P streaming
 - Live event P2P streaming
- Information Asymmetry
 - Hidden action in multi-hop routing

Incentive Mechanisms

- Tokens/currency
 - Appropriate for trading of multiple resource types
 - Examples: Mojonation [Wilcox-O'Hearn02], KARMA [Vishnumurthy03], tycoon [Lai04], ...
- Barter/taxation
 - Sometimes called "tit-fot-tat" or "bit-for-bit"
 - Appropriate for single commodity type
 - Examples: Bittorrent [Cohen03], ESM [Chu04]
- Reciprocity
 - Direct reciprocity (repetition)
 - Indirect reciprocity (reputation)




Direct Reciprocity

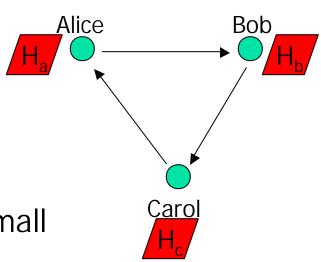

- Repetition encourages cooperation
 - e.g., Prisoners' Dilemma game:
 - one-shot game: mutual defection is dominant strategy
 - infinitely repeated game: mutual cooperation is dominant
- Simple tit-for-tat (TFT) strategy works very well in iterated prisoners' dilemma (IPD) tournaments [Axelrod84]
- Clustering (e.g., clubs [Asvanund03]) and server selection (e.g., CoopNet [Padmanabhan02]) may facilitate direct reciprocity

Direct Reciprocity

- But direct reciprocity can be difficult to achieve in P2P networks
 - Large populations and dynamic memberships
 → few repeat transactions
 - Asymmetries in interests
 - Asymmetries in capabilities

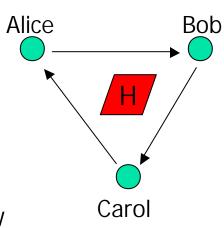
Indirect Reciprocity

- Peers earn <u>reputation</u> via cooperation
- Reputable peers receive preferential treatment
- Implementation overhead for maintaining reputation information
- Various proposals
 - Image scoring [Nowak98], Free Haven [Dingledine90], Eigentrust [Kamvar03], Differentiated admission [Kung03], CONFIDANT [Buchegger02],

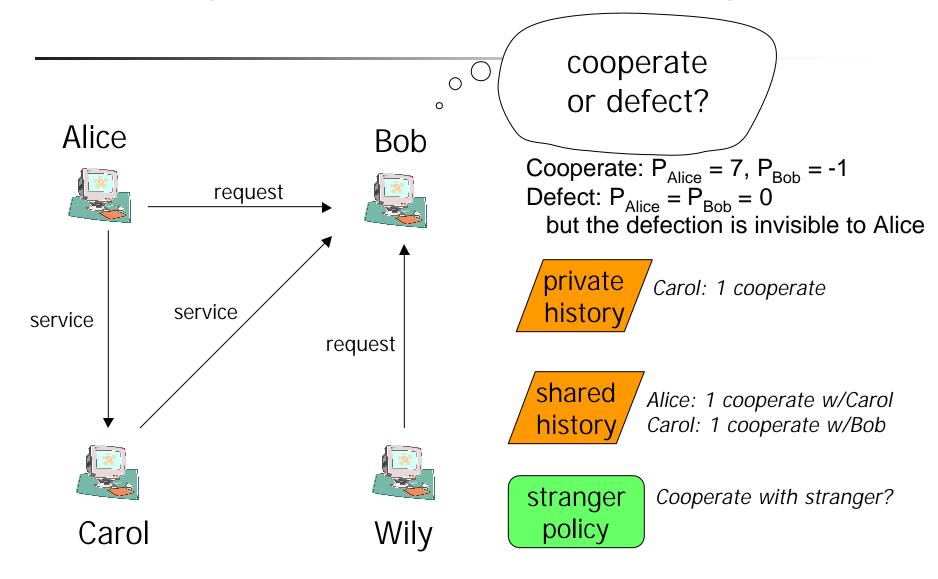

. . .

Tradeoffs and Challenges

- Design space for reciprocity-based schemes
 - Direct vs. indirect reciprocity?
 - Private vs. shared history
 - Server selection
 - Shared history: collusion resistance
 - Dealing with invisible defections
 - Dealing with strangers and whitewashers
 - Dealing with traitors
- Simulation-based study of robust incentive techniques in [Feldman04a]


Private History

- Corresponds to direct reciprocity
- Advantages
 - Implementation is simple and decentralized
 - Immune to collusion
- Disadvantages
 - Requires repeat transactions
 - e.g., low rate of turnover, small populations
 - Deals poorly with asymmetry of interest

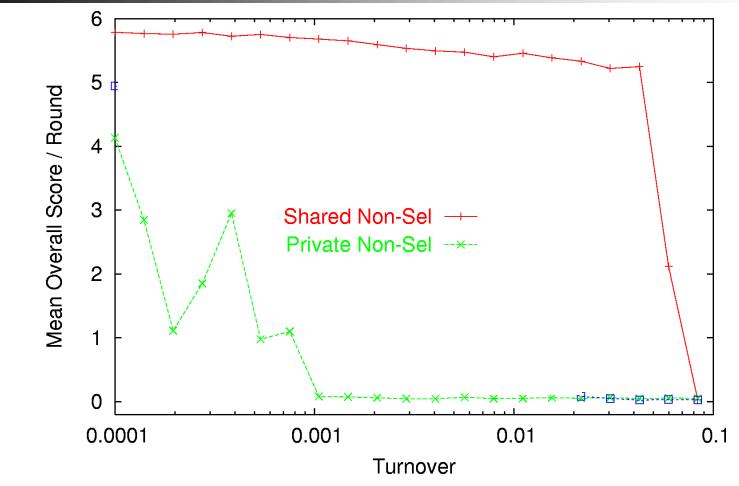


Shared History

- Corresponds to indirect reciprocity
- Advantages
 - Tolerates few repeat transactions (large populations, high turnover)
 - Tolerates asymmetry of interest
- Disadvantages
 - Susceptible to collusion
 - Subjective shared history via max-flow algorithm [Feldman04a]
 - Implementation overhead

To cooperate or not to cooperate?

Simulation Framework

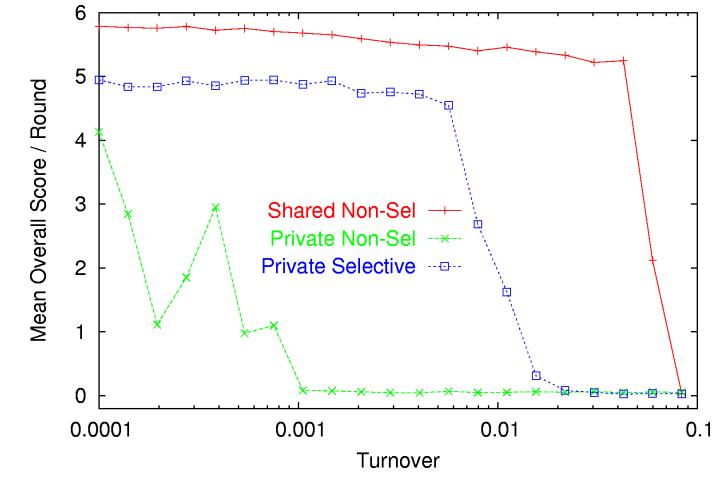

- Initial population mixture
 - 1/3 cooperators
 - 1/3 defectors
 - 1/3 reciprocators
- Game composed of rounds in which players are randomly matched, one as client, the other as server
- Learning: players probabilistically switch to strategies with higher payoffs
- Defectors can engage in collusion or whitewashing attacks
- Reciprocators can choose shared vs. private history, and different stranger policies
- Additional simulation parameters
 - Population size
 - Turnover rate
 - Hit rate

...

Dealing with Invisible Defections

- Decision function based only on cooperation, not defection
- Reciprocative decision function: cooperate with probability $g_i(i)$
 - Generosity: $g_i = p_i / c_i$
 - *p_i*: service *i* has provided
 - *c_i*: service *i* has consumed
 - Normalized generosity: $g_j(i) = g(i) / g(j)$
 - Entity *i* 's generosity relative to entity *j* 's generosity

Private vs. Shared History

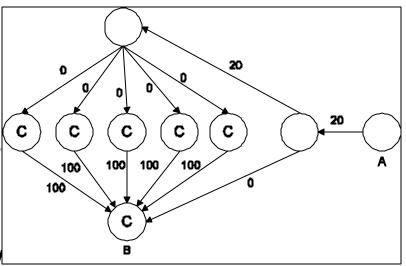


Shared history scales to larger populations and higher turnover rates

John Chuang

Academia Sinica Summer Institute on P2P Computing 2004

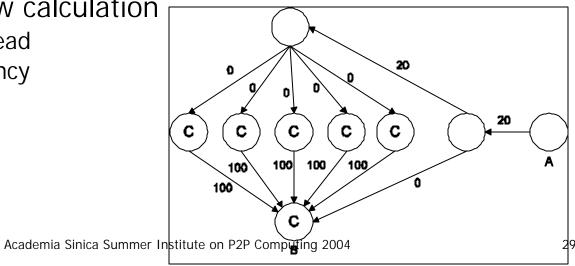
Server Selection

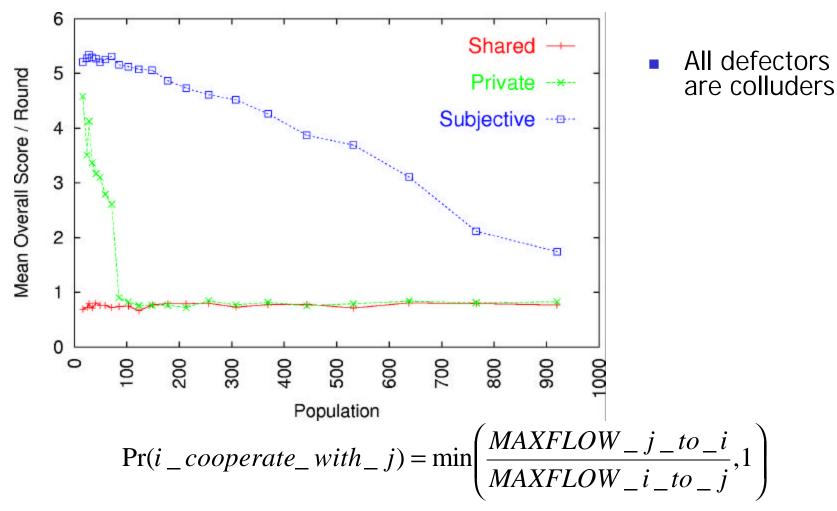

Server selection improves scalability of private history approach

John Chuang

Academia Sinica Summer Institute on P2P Computing 2004

Collusion


- Shared history susceptible to collusion
- Many forms of collusion may be possible


- False praise: falsely claiming defectors have cooperated
- False accusation: falsely claiming cooperators have defected
- Colluder strategy: claiming to have received service from other colluders
- Subverts *objective* reputation systems
- Negative effect is magnified when combined with zero-cost identities
- Mitigated by *subjective* reciprocity
 - e.g., leveraging pre-trusted peers [Kamvar03], social links [Marti04], maxflow algorithm

Subjective Reciprocity: Maxflow

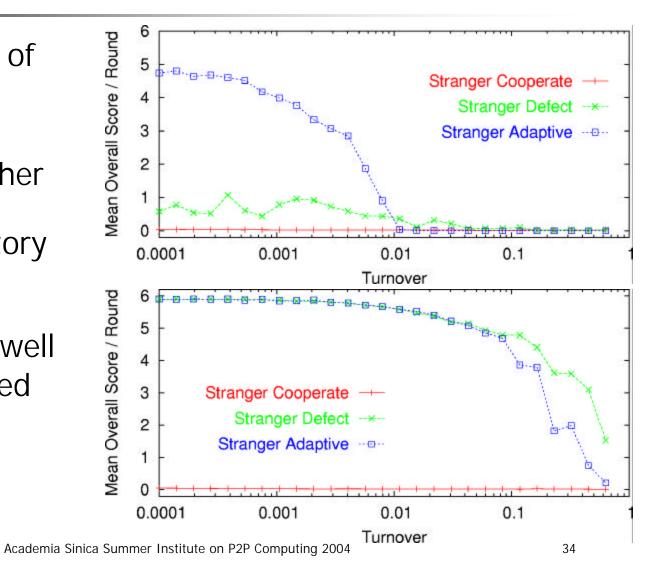
- Compute the maximum "reputation capacity" from source to sink
- Proven to be attack resistant for authentication [Levien98][Reiter99]
- Does not require centralized trust
- Mitigate false praise, but not false accusation
- Cost: long running time O(V³)
- Solution: bound mean number of nodes examined during maxflow calculation
 - Bound overhead
 - Bound efficiency

Subjective Reciprocity: Maxflow

Whitewashing Attack

- The use of history (or reputation) assumes that entities maintain persistent identities
- Problem: many online systems have zero-cost identities
 - Encourages newcomers to join
 - Circumvents history-based strategies that always cooperate with strangers
- Whitewash strategy: always defect, and continuously change identity
- Whitewashers indistinguishable from legitimate newcomers

Stranger Policies


- Always cooperate (e.g., Axelrod's TFT)
 - Fully exploited by whitewashers
- Always defect
 - Provides immunity against whitewashers
 - Incurs "social cost of cheap pseudonyms" [Friedman98]
 - Raises bar to entry (discourage newcomers)
 - May initiate undesirable cycles of defections
- Randomly cooperate
 - Allows exploitation by whitewashers

Stranger Policies

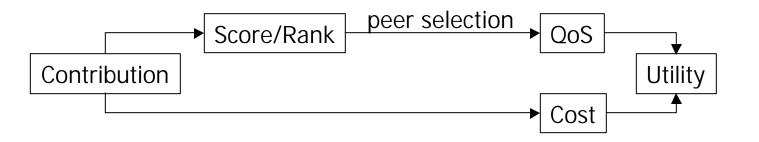
- Adaptively cooperate
 - Cooperate with strangers based on "friendliness" of strangers in system: p_s / c_s
 - P_s: number of services strangers have provided
 - C_s: number of services strangers have consumed
 - Only taxes newcomers when necessary

Stranger Adaptive

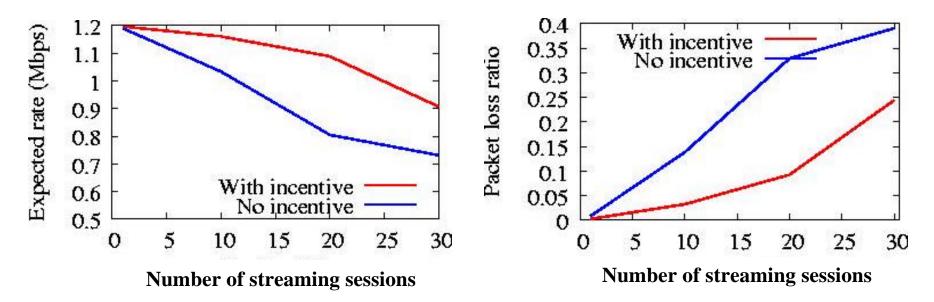
- In the presence of whitewashers:
- SA scales to higher turnover rates with private history
- SA performs as well as SD with shared history


Outline

- P2P system characteristics
 - Disincentives in sharing \rightarrow free-riding
- Incentive mechanisms
 - Tokens, reputation, taxation, contracts, ...
 - Challenges: whitewashing, collusion, etc.
- Case study:
 - On-demand P2P streaming
 - Live event P2P streaming
- Information Asymmetry
 - Hidden action in multi-hop routing

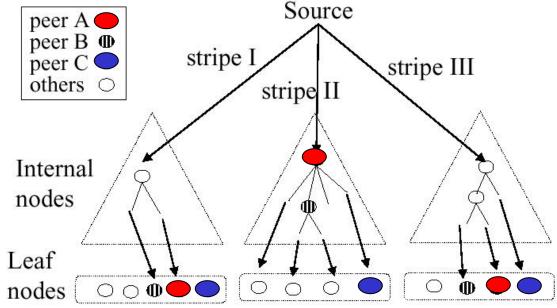

Case Studies: P2P Streaming

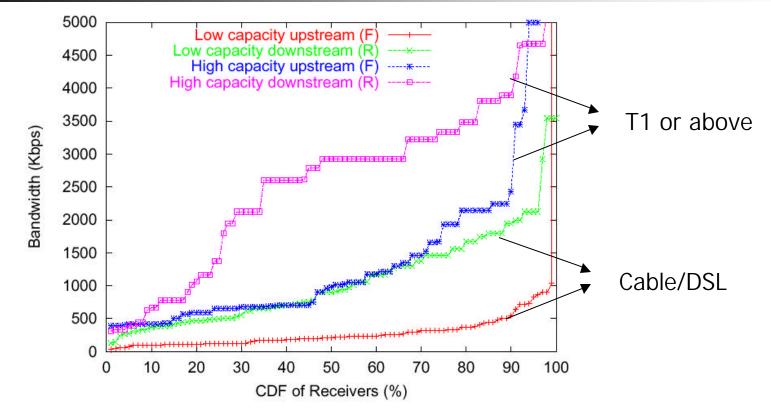
- Peers contribute forwarding/uploading BW
- On-demand P2P streaming [Habib04]:
 - Many-to-one: each peer can stream from multiple peers
 - Asynchronous consumption & contribution
- Live-event P2P streaming [Chu04]:
 - One-to-many: single publisher, multiple receivers
 - Simultaneous consumption & contribution
- Different incentive mechanisms
 - Implemented for PROMISE and ESM systems, respectively


On-Demand P2P Streaming

- Incentive technique: service-differentiated peer selection
 - Contributors get to select the best available peers

- Since consumption and contribution are independent, need to keep history
- Rational user determines optimal contribution level to maximize utility


On-Demand P2P Streaming


- Use of incentive mechanism improves system performance
 - Except when system load is low, or when network is congested

Live-Event P2P Streaming

- Video stream split into multiple stripes
- Peers form multiple disjoint tree structure
- Simultaneous consumption and contribution
 - No need to maintain history

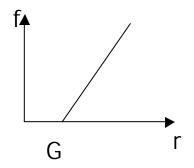
Node Heterogeneity

- Measured TCP throughput for slashdot trace
- Not all peers could (should) consume and contribute the same amount of bandwidth

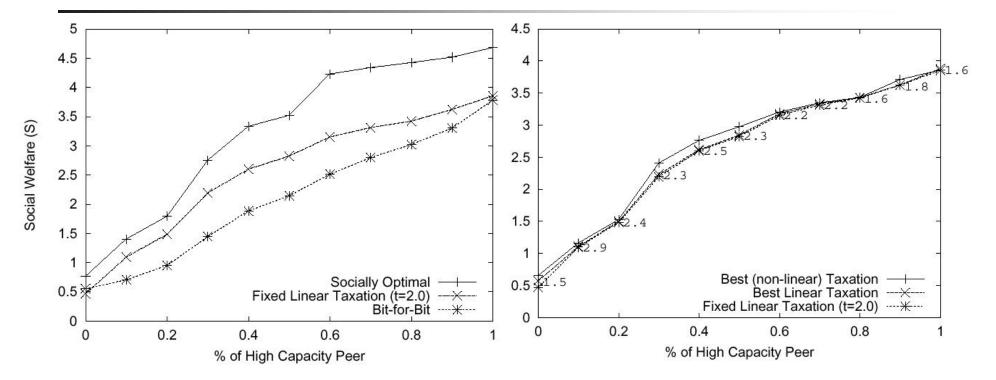
John Chuang

Taxation

- Publisher sets and enforces tax schedule to achieve resource re-distribution
 - Subsidization of resource-poor nodes by resourcerich nodes
- Rich literature in public finance
 - Optimal income taxation


Linear taxation

Contribution according to tax schedule


 $f = max[t^{*}(r - G), 0]$

- where
 - f = forwarding bandwidth
 - r = received bandwidth
 - t = marginal tax rate
 - G = demogrant
- Publisher sets t and G, peers choose f and r
- Every peer receives at least a demogrant G
- Note: "tit-for-tat" scheme of Bittorrent [Cohen03] is special case with t=1 and G=0

John Chuang

Evaluation: Social Welfare

Simple linear taxation scheme with fixed tax rate and dynamically adjusted demogrant is robust for different peer compositions

Outline

- P2P system characteristics
 - Disincentives in sharing \rightarrow free-riding
- Incentive mechanisms
 - Tokens, reputation, taxation, contracts, ...
 - Challenges: whitewashing, collusion, etc.
- Case study:
 - On-demand P2P streaming
 - Live event P2P streaming
- Information Asymmetry
 - Hidden action in multi-hop routing

Information Asymmetry

- Condition in which some relevant information is known to some but not all of the parties involved
 - Hidden information
 - Hidden action

Hidden Information

- Agents possess private information (e.g., individual preferences, costs)
- How to induce truthful revelation to compute allocation outcome?
 - e.g., auction: agents submit truthful bids; auctioneer receives all bids and determine winner and price
- Mechanism design
 - Sometimes referred to as inverse game theory

DAMD

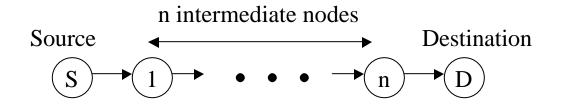
- Mechanism design (MD)
 - Centralized computation
- Distributed algorithmic mechanism design (DAMD)
 - Distributed computation
 - Computation and communication complexity
 - Internet applications [Feigenbaum02a]:
 - BGP routing [Feigenbaum02b] and Multicast cost sharing [Feigenbaum01]
 - P2P & overlay networks, web caching, distributed task allocation

z = 4

A = 5

 $\begin{array}{c} X \\ c_X = 2 \end{array}$

 $D c_D = 1$

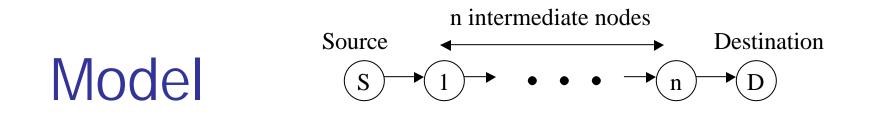

 $B c_B = 2$

 $Y c_Y = 3$

Hidden Action

- Agents' actions may be unobservable by principal
- Objective: the principal designs contract to induce desired action/behavior by the agents
- Also known in economics literature as the "moral hazard" problem

Hidden Action in Multi-hop Routing [Feldman04c]


- Multi-hop routing requires cooperation by intermediate nodes
 - P2P overlay networks (e.g., DHT)
 - Wireless ad hoc networks
 - Inter-domain routing
- Intermediate nodes have disincentives to cooperate [Christin04]

Hidden Action in Multi-hop Routing

- Actions of intermediate nodes are hidden from the sender and receiver
 - Multi-hop:
 - cannot attribute failure to a specific node
 - Stochastic outcome: external factors beyond the node's control
- Rational intermediate nodes may choose to forward packets at a low priority or not forward at all

Research Questions

- Is it possible to design contracts to induce cooperative behavior of intermediate nodes despite hidden-action?
- Under what circumstance, if any, might monitoring mechanisms be useful?
- What are the implications to network design?

- Principal-agent model with multiple agents performing sequential hidden action
- Agents choose between high and low effort actions
 - Drop vs. forward
 - Best-effort vs. priority forwarding
- Principal can observe
 - Final outcome only (without monitoring)
 - Per-hop outcome (with monitoring)
- Principal signs contract with each agent; payment based on final outcome (without monitoring) or per-hop outcome (with monitoring)

Actions, Costs and Outcomes


- Actions $a_i \in \{0,1\}$:
 - Low-effort: $a_i = 0$
 - High-effort: $a_i = 1$
- Costs associated with actions:
 - $C(a_i = 0) = 0$
 - $C(a_i = 1) = c$
- Outcomes $X(a, k) = x \in \{x^L, x^H\}$
 - *x^L*: packet doesn't reach destination
 - *x^H*: packet reaches destination

Payments and Utilities

- Individual payments, s_{i_i} depend on outcome
- Utility of participants:
 - Agent *i*: $U_i(s_i, c_i, a_i) = s_i a_i c_i$
 - Principal: W(x, S) = b(x) S, where: $S = \sum_{i=1}^{n} s_i$
- Principal needs to satisfy two constraints for each agent:
 - IR: individual rationality (participation constraint)
 - IC: incentive compatibility

Assumptions

- Transit cost, c, is common knowledge
- Topology is common knowledge
- Nodes are risk-neutral
- (n+1) per-hop transmission events are
 i.i.d.

Results

- Scenario 1: drop vs. forward without monitoring
- Scenario 2: drop vs. forward with monitoring
- Scenario 3: best-effort vs. priority forwarding
- Scenario 4: multiple disjoint paths

Scenario 1: Drop Versus Forward without Monitoring

- Probability of a one-hop success: $Pr(x_{i \to i+1}^{H} | a_i) = (1-k)a_i$
- Principal observes only the final outcome
- Payment schedule to agent *i*: $s_i = (s_i^H, s_i^L)$ where:

$$s_i^H = s_i(x = x^H)$$
 If packet reaches **destination**
 $s_i^L = s_i(x = x^L)$ If packet does not reach **destination**

Scenario 1: Drop Versus Forward without Monitoring

<u>Result:</u> Under the best contract that induces high-effort behavior from all agents in a **Nash equilibrium:**

- Agent's expected payment = Agent's expected cost
- Principal achieves the first-best utility
- Payment schedule:

$$s_{i}^{L} = 0$$

$$s_{i}^{H} = \frac{c}{(1-k)^{n-i+1}}$$

Scenario 1: Drop Versus Forward without Monitoring

Proof sketch: IC constraint: $Pr(x^{H} | a_{j \ge i} = 1)s_{i}^{H} + Pr(x^{L} | a_{j \ge i} = 1)s_{i}^{L}$ $E[s]_{a_{j \ge i}=1} - c \ge E[s]_{a_{i}=0,a_{j > i}=1}$ $Pr(x^{H} | a_{i} = 0, a_{j > i} = 1)s_{i}^{H} + Pr(x^{L} | a_{i} = 0, a_{j > i} = 1)s_{i}^{L}$

IR constraint:

$$\Pr(x^{H} \mid a_{j \ge i} = 1)s^{H}_{i} + \Pr(x^{L} \mid a_{j \ge i} = 1)s^{L}_{i}$$

$$\Pr(x^{H}_{S \to i} \mid a_{j < i} = 1)(E[s]_{a_{j \ge i} = 1} - c) + \Pr(x^{L}_{S \to i} \mid a_{j < i} = 1)E[s]_{a_{i = 0}, a_{j > i} = 1} \ge 0$$

Scenario 1: Drop Versus Forward without Monitoring

<u>Proof sketch (continued):</u>

IC and IR bind at the optimal contract

- Expected payment to node i: $E[s]_{a_{j=1} \forall j} = (1-k)^i c$ Expected cost to node i: $Pr(x_{S \to i}^H)c = (1-k)^i c$

 $\Pr(x^H)s_i^H + \Pr(x^L)s_i^L$

Scenario 2: Drop Versus Forward with Monitoring

- With per-hop monitoring, sender knows outcome of each per-hop transmission
- Scenario reduces to n instances of single principal – single agent problem

• IC:
$$E[s]_{a_i=1} - c \ge E[s]_{a_i=0}$$
 $(1-k)s_i^H + ks_i^L - c \ge s_i^L$
• IR: $E[s]_{a_i=1} - c \ge 0$ $(1-k)s_i^1 + ks_i^0 - c \ge 0$

- Principal obtains same utility as first-best contract
- *n* identical payment schedules:

$$s_i^L = 0$$
$$s_i^H = \frac{c}{1-k}$$

The Value of Per-Hop Monitoring

- The sender derives the same expected utility whether it obtains per-hop monitoring or not
- Yet, several differences

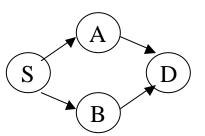
	Solution concept	Location effect	Vulnerability to collusion
Without monitoring	Nash equilibrium	Location dependent contracts	Not vulnerable
With monitoring	(Weak) dominant strategy	Location independent contracts	Vulnerable

Scenario 3: Best-Effort versus Priority Forwarding

Priority forwarding reduces the loss rateProbability of a one-hop success:

$$\Pr(x_{i \to i+1}^{H} | a_i) = 1 - (k - qa_i)$$

where:


 $q \in (0,1]$ and $k \in [q,1]$

 Packet may reach the destination under low-effort actions, but with lower probability

Scenario 3: Best-Effort versus Priority Forwarding

- Result: sender derives same expected utility with or without monitoring
- At the optimal contract, the payment upon a failure is negative (transfer from agent to principal)
 - If limited liability constraint is imposed ($s \ge 0$), first-best cannot be achieved
- The sender may maximize its utility by signing a contract with only *m* out of the *n* nodes
 - Without monitoring: contract with nodes closest to destination, since expected cost decreases in i

Scenario 4: Multiple Disjoint Paths

- Multiple disjoint paths exist from source to destination
- Sender elects to send multiple copies of the packets to maximize likelihood of delivery
- Two scenarios:
 - Per-path monitoring: has a specific copy of the packet reached destination?
 - No per-path monitoring: has at least one copy of the packet reached destination?
- Result: sender derives same expected utility whether it obtains *per-path* monitoring information or not

Discussion

- Appropriate design of contracts achieves cooperative behavior despite hidden-action
- Sender achieves first-best utility in Nash equilibrium in the absence of monitoring under several assumptions
- Per-hop or per-path monitoring:
 - Does not reduce implementation cost to sender under these assumptions
 - Achieves cooperative behavior in dominant strategy
 - Vulnerable to various forms of collusion
 - May yield some benefit under different assumptions, which may or may not justify its cost
- Implications to system design
 - Monitoring vs. contracting

Ongoing and Future Work

- Uniqueness of equilibrium
- Recursive contracts
- Relax assumptions:
 - Correlated transmission events (not i.i.d.)
 - Risk-averse agents
 - Topology and/or transit costs are not common knowledge
- More realistic monitoring mechanisms
- Collusive behavior
- Uncertainty with respect to choice and observability

Outline

- P2P system characteristics
 - Disincentives in sharing \rightarrow free-riding
- Incentive mechanisms
 - Tokens, reputation, taxation, contracts, ...
 - Challenges: whitewashing, collusion, etc.
- Case study:
 - On-demand P2P streaming
 - Live event P2P streaming
- Information Asymmetry
 - Hidden action in multi-hop routing

Conclusions

- Inherent decentralization of P2P systems brings incentives to the forefront
 - Peers not just obedient or malicious, but strategic
 - Collective welfare often misaligned with individual rationality
 - Significant challenges and opportunities in designing incentive mechanisms for diversity of P2P systems

Conclusions

- Economics-informed P2P system design
 - Game theory (mechanism design, evolution and learning, network formation)
 - Economics of asymmetric information (incentive and contract theory, agency theory)
 - Public finance
 - Theory on public goods and club goods
 - Social network theory
- Generalizable to various distributed and networked systems, including the Internet

Economics-Informed System Design

- Emerging multidisciplinary research communities
 - p2pecon
 - p2pecon'03: http://www.sims.berkeley.edu/p2pecon/
 - p2pecon'04: http://www.eecs.harvard.edu/p2pecon/
 - PINS
 - Practice and Theory of Incentives and Game Theory in Networked Systems
 - http://www.acm.org/sigs/sigcomm/sigcomm2004/pins.html
 - WEIS
 - Workshop on Economics and Information Security
 - WEIS'04: http://www.dtc.umn.edu/weis2004/

- [Adar00] E. Adar and B. Huberman, Free Riding on Gnutella. First Monday 5(10), October 2000.
- [Andreoni90] J. Andreoni, Impure Altruism and Donations to Public Goods: A Theory of Warm-Glow Giving." Economic Journal, v.100, June 1990, 464-477.
- [Asvanund03] A. Asvanund, S. Bagla, M.H. Kapadia, R. Krishnan, M.D. Smith and R. Telang, Intelligent Club Management in Peer-to-Peer Networks. 1st Workshop on Economics of Peer-to-Peer Systems, June 2003.

[Axelrod84] R. Axelrod, Evolution of Cooperation. Basic Books, 1984.

- [Buchegger02] S. Buchegger, J.Y. Le Boudec, Performance Analysis of the CONFIDANT Protocol (Cooperation Of Nodes - Fairness In Dynamic Ad-hoc NeTworks). Proceedings of MobiHoc 2002, Lausanne, June 2002.
- [Christin04] N. Christin and J. Chuang, On the Cost of Participating in a Peer-to-Peer Network, 3rd International Workshop on Peer-to-Peer Systems (IPTPS'04), February 2004.
- [Chu04] Y.-H. Chu, J. Chuang, and H. Zhang, A Case for Taxation in Peer-to-Peer Streaming Broadcast. ACM SIGCOMM'04 Workshop on Practice and Theory of Incentives in Networked Systems (PINS), August 2004.
- [Cohen03] B. Cohen, Incentives Build Robustness in BitTorrent. 1st Workshop on Economics of Peer-to-Peer Systems, June 2003.

- [Dingledine00] R. Dingledine, M.J. Freedman, and D. Molnar. The FreeHaven Project: Distributed anonymous storage service. Workshop on Design Issues in Anonymity and Unobservability, July 2000.
- [Feigenbaum01] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions. J. Computer and System Sciences, 63, 2001.
- [Feigenbaum02a] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism Design: Recent Results and Future Directions. Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, ACM Press, New York, 2002, pp. 1-13.
- [Feigenbaum02b] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-based mechanism for lowest-cost routing. In Proc. 21st ACM Symposium on Principles of Distributed Computing, New York, NY, 2002.
- [Feldman03] M. Feldman, K. Lai, J. Chuang and I. Stoica, Quantifying Disincentives in Peer-to-Peer Networks. 1st Workshop on Economics of Peer-to-Peer Systems, Berkeley CA, June 5-6 2003.
- [Feldman04a] M. Feldman, K. Lai, I. Stoica, and J. Chuang, Robust Incentive Techniques for Peer-to-Peer Networks. ACM E-Commerce Conference (EC'04), May 2004.

- [Feldman04b] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, Free-Riding and Whitewashing in Peer-to-Peer Systems. ACM SIGCOMM'04 Workshop on Practice and Theory of Incentives in Networked Systems (PINS), August 2004.
- [Feldman04c] M. Feldman and J. Chuang, Hidden-Action in Multi-Hop Routing. 2nd Workshop on Economics of Peer-to-Peer Systems, June 2004.
- [Friedman01] E.J. Friedman and P. Resnick. The social cost of cheap pseudonyms. Journal of Economics and Management Strategy, 10(2):173-199, 2001.
- [Habib04] A. Habib and J. Chuang, Incentive Mechanism for Peer-to-Peer Media Streaming. 12th IEEE International Workshop on Quality of Service (IWQoS'04), June 2004.
- [Kamvar03] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The EigenTrust Algorithm for Reputation Management in P2P Networks. In WWW 2003, 2003.
- [Kung03] HT Kung and Chun-Hsin Wu, Differentiated Admission for Peer-to-Peer Systems: Incentivizing Peers to Contribute Their Resources.
- [Lai04] K. Lai, B.A. Huberman and L. Fine, Tycoon: A Distributed Market-based Resource Allocation Systems", HP Labs Technical Report cs.DC/0404013, http://arxiv.org/abs/cs.DC/0404013, April 5, 2004.
- [Levien98] R. Levien and A. Aiken. Attack-resistant trust metrics for public key certification. 7th USENIX Security Symposium, 1998.

- [Marti04] S. Marti, P. Ganesan, H. Garcia-Molina, DHT Routing using Social Links, IPTPS 2004.
- [Nowak98] M.A. Nowak and K. Sigmund. Evolution of indirect reciprocity by image scoring. Nature, 393:573--577, 1998.
- [Padmanabhan02] V. Padmanabhan and K. Sripanidkulchai. The case for cooperative networking. In Proc. of 1st International Workshop on Peer-to-Peer Systems (IPTPS '02), Cambridge, MA, USA, March 2002.
- [Reiter99] M. Reiter and S. Stubblebine, Authentication Metric Analysis and Design, ACM Trans. Information and System Security, vol. 2, no. 2, pp. 138-158, 1999.
- [Sariou02] S. Saroiu, P.K. Gummadi, and S. Gribble, A measurement study of peerto-peer file sharing systems. In Proceedings of Multimedia Computing and Networking 2002.
- [Vishnumurthy03] V. Vishnumurthy, S. Chandrakumar and E.G. Sirer, KARMA : A Secure Economic Framework for Peer-To-Peer Resource Sharing. 1st Workshop on Economics of Peer-to-Peer Systems, June 2003.
- [Wilcox-O'Hearn02] B. Wilcox-O'Hearn, Experiences Deploying a Large-Scale Emergent Network. IPTPS 2002.