On the Cost of Participating in a Peer-to-Peer Network

Nicolas Christin and John Chuang
University of California, Berkeley
School of Information Management and Systems
{christin, chuang}@sims.berkeley.edu

Problem statement

- Evaluate the amount of resources each peer contributes for being part of an overlay network
- Evaluate the benefits associated with participation
- Related work generally only considers connectivity, and is not concerned with maintenance or routing overhead
- We'll focus on geometries, i.e., set of nodes and edges (topology) associated with a routing algorithm (shortest path routing unless otherwise noted)

Motivation

- Allows us to predict potential disincentives to collaborate
- Allows us to identify hot spots
- Allows us to help design load balancing algorithms
- Possible benchmark to characterize efficiency of network as a whole
- Can be used to distinguish between proposals (e.g., DHTs)

Cost model

- A given node u requests an item, serves a request, or route requests between other nodes
- Latency cost

$$L_u = \sum_{v \in V} \sum_{k \in K_v} l_{u,k} t_{u,v} \Pr[Y = \sum_{v \in V} \sum_{k \in K_v} l_{u,k} t_{u,v}]$$

Service cost

$$S_u = \sum_{k \in K_u} s_{u,k} \Pr[Y = k]$$

Routing cost

$$R_u = \sum_{v \in V} \sum_{w \in V} \sum_{k \in K_w} r_{u,k} \Pr[X = v]$$
 Price paid

Maintenance cost

$$M_u = m_u \deg(u)$$

Benefits

Analysis assumptions

- Homogeneous peers and homogeneous links (i.e., for any u and k, $l_{u,k} = l$, $s_{u,k} = s$, $r_{u,k} = r$ and $m_u = m$.)
- Steady-state regime
- Sources of requests uniformly distributed over the set of nodes (i.e., Pr[X = u] = 1/N)
- Destinations of requests uniformly distributed over the set of nodes (implies $S_u = s/N$)
- Quite idealistic!

Social optimum

Total cost for node u

$$C_u = L_u + S_u + R_u + M_u$$

Total cost (for the whole network)

$$C = \sum_{u} C_u$$

$$m \le l/N + r/N^2$$

- Social optimum: geometry that minimizes C
 - If number of nodes N is small and/or maintenance operations come cheap (i.e., m is small), social optimum is the **full mesh**
 - Otherwise, adding or removing links from a star network always increases C (local optimum)

Application to DHT geometries

Closed form expressions can be derived

$$\rho_{u,D} = 1 + N^{\frac{D-1}{D}} \left(-N^{\frac{1}{D}} + D \left(N^{\frac{1}{D}} - 1 \right) + \left(\left\lfloor \frac{N^{\frac{1}{D}}}{2} \right\rfloor - 1 \right) \left(\left\lceil \frac{N^{\frac{1}{D}}}{2} \right\rceil - 1 \right) \right)$$

$$+ \left(\left\lfloor \frac{N^{\frac{1}{D}}}{2} \right\rfloor - 1 \right) \left(\left\lceil \frac{N^{\frac{1}{D}}}{2} \right\rceil - 1 \right) \right)$$

$$L_u = l \frac{D\Delta^{D-1}(\Delta - 1)}{N}$$

$$\square R_u = r \frac{\rho_{u,D}}{N^2}$$

$$R_u = r \frac{\Delta^{D-1}(D(\Delta - 1) - \Delta) + 1}{N^2}$$

$$\square$$
 $M_u = 2mD$

$$\square \quad M_u = mD(\Delta - 1)$$

(same results for Chord rings with $\Delta=2$)

$$L_{\min} = \frac{l}{N} \left(D\Delta^D + \frac{D}{\Delta - 1} - \frac{\Delta(\Delta^D - 1)}{(\Delta - 1)^2} \right) \cdot e \cdot B \quad L_{\max} = l \frac{D\Delta^{D+1} - (D+1)\Delta^D + 1}{N(\Delta - 1)}$$

Different nodes have different latency costs

$$L_{\text{mip}} \leq L_u \leq L_{\text{max}}$$

Different nodes have different routing costs

$$0 \le R_u \le \eta \rho_{\text{max}}/N^2$$

Different nodes have different maintenance costs

$$M_{u} = \frac{\rho_{\text{max}} = \frac{(D-1)(\Delta^{D+2} - (\Delta-1)^{2}) - D\Delta^{D+1} + \Delta^{2}}{(\Delta-1)^{2}}}{(\Delta-1)^{2}}$$

Not really clear if it can be made symmetric

Asymmetry in de Bruijn graphs (cnt'd)

Δ: alphabet size

D: network diameter

$$L_{\max} = \max_{u} L_u$$

$$L_{\min} = \min_{u} L_u$$

$$R_{\text{max}} = \max_{u} R_u$$

$$R'_{\min} = \min_{u} \{R_u : R_u > 0\}$$

	T	
(Δ, D)	$\frac{L_{max}}{L_{min}}$	$\frac{R_{ ext{max}}}{R'_{ ext{min}}}$
(2,9)	1.11	4.51
(3,6)	1.04	4.41
(4,4)	1.03	2.71
(5,4)	1.02	2.78
(6,3)	1.01	1.86

Routing and latency costs

Discussion

- Full meshes
 - Low overall resource usage
 - Low scalability
- Star networks
 - Low overall resource usage
 - Low scalability
 - Low resiliency
 - Very asymmetric
- Distributed designs (e.g., DHTs)
 - High resiliency, high scalability, good symmetry
 - Higher overall resource usage
- Best of both worlds: hierarchical networks?

Open problems

- Remove assumptions
 - Measurement studies?
- Incentive mechanisms in asymmetric networks
 - How much knowledge should the peers possess?
 - Use asymmetries to match heterogeneity?
- How to determine a meaningful set (l, s, r, m) for a class of applications?
- Network formation